
Test and Evaluation of
Artificial Intelligence Models

What to Consider in a Test & Evaluation Strategy

April 2024

Cleared for Public Release

Table of Contents

Thinking about
Performance

pages 7 - 17

Thinking about
Data

pages 29 - 39

Thinking about
Context

pages 55 - 57

01

02

03

04

05

06

Thinking about
Testing Methods
pages 18 - 28

Thinking about
AI Models
pages 40 - 54

Thinking about
Documentation
pages 58 - 63

Page 1

T&E Strategies
for AIECs
This Section:

+ Specifies the role of the current document within the larger
framework.

+ Provides an overview of the framework for the test and evaluation of
AI-enabled capabilities produced by CDAO Assess and Assurance. 00

Page 2

This document is part of a framework for the
T&E of AI-enabled capabilities

The T&E of AIEC Framework provides
best practices and guidance on how to
test and evaluate AIEC.

The framework is organized into four
categories of testing and provides
different types of resources to AIEC
developers and working-level testers.

CDAO Assessment and Assurance is creating a framework to provide guidance on how
to test and evaluate (T&E) AI-enabled capabilities (AIECs).

The DoD community for the T&E of
AIEC comes from a variety of
backgrounds.

The T&E of AIEC Framework promotes
a shared understanding between AIEC
experts new to T&E and to T&E experts
new to AIEC.

This document discusses the test and
evaluation of AI models, both
standalone and integrated into system-
of-systems, in a Defense context.

It is intended to help AIEC developers
and working-level testers incorporate
operational realism into testing
throughout an AIEC’s lifecycle.

What is the framework? Why is it needed? What is this document?

This document provides:

Guidance and best practices

T&E at the algorithm level

A primer on T&E of AI models

Strategy-level T&E considerations

This document does NOT provide:

Binding policy and requirements

T&E at the system-of-systems level

A comprehensive AI Model T&E guide

Detailed T&E implementation

Page 3

Human Systems Integration (HSI) T&E
Evaluating an AIEC’s ability to help stakeholders
observe and orient to their environment, make
informed decisions, and carry out their missions.

CDAO’s T&E of AIEC framework is organized
into four focus areas
While these T&E focus areas help break critical aspects of T&E into digestible pieces,
they are neither mutually exclusive nor cleanly delineated in real testing.

Operational T&E (OT&E)
Evaluating an AIEC performing representative
missions within an operationally realistic
environment against a realistic adversary.

Systems Integration (SI) T&E
Evaluating an AI component within its larger
system to ensure that the AIEC functions as a
holistic unit and identify its limitations and risks.

AI Model T&E
Evaluating and documenting AI models and data
across performance dimensions informed by
system and mission constraints.

This document covers the AI Model T&E focus area

Page 4

This
document
focuses on
Part 1

1 | Write and
assess T&E
Strategies

Provides a high-level
overview of critical
T&E concepts that will
be influenced by the
inclusion of AI models
in the system under
test.

Supports testers and
developers as they
write TESs and assess
whether the TES is
committed to the right
evaluations.

2 | Write and
assess Detailed
Test Plans

Provides guidance for
implementation of T&E
concepts introduced in
Part 1; highlights
promising paths
forward for unsolved
challenges.

Supports testers and
developers as they
develop and
implement detailed
test plans that capture
mission objectives.

3 | Engage with
other DoD T&E
stakeholders

Provides frameworks
outlining how T&E is
critical to fielding
trustworthy AIECs
across DoD acquisition
pathways and mission
applications.

Supports testers and
developers as they
advocate for policy
and investments that
address DoD T&E
shortcomings.

4 | Execute tests
and rigorously
analyze results

Provides resources
such as templates,
validated
measurement
instruments, and
automated analysis
tools.

Supports testers and
developers by
streamlining and
automating common
T&E activities with
tailorable tools.

CDAO is developing a series of products that
address critical T&E needs
Part 1 is designed to help testers understand core T&E concepts so that working-level
testers can write and assess test and evaluation strategies for AI-enabled capabilities

Page 5

What is a Test & Evaluation Strategy?
A high-level document in DoD acquisitions
that guides test planning and execution.

Captures the mission(s) a capability is
intended to perform and all hardware and
interfacing systems in the test design.

Describes the test events and activities
necessary to evaluate the system and support
acquisition, technical, and program decisions.

Identifies and prioritizes assessment areas to
inform test team data requirements to support
major program decisions.

Specifies the resources required to conduct
T&E and shortfalls in resourcing that will
require investments.

You can read more about DoD TESs at
https://www.test-evaluation.osd.mil/T-E-Enterprise-Guidebook/

Learn More

Page 6

Thinking about
Performance
This Section:

+ Describes the multiple dimensions of performance

+ Outlines how performance varies based on the AI model type

+ Describes common aspects and measures of performance 01
Page 7

The Performance Iceberg

Testing an AI model is vital for its quality, reliability, and
usefulness. But ensuring testing is sufficiently robust is
not simple, as many subtle aspects of performance
require evaluation and validation. Correctness, the most
visible and intuitive metric, shows how well a model
achieves its functional performance goals. But
correctness measurement alone is not enough for
rigorous and robust performance evaluation.

There are many other aspects that are hidden below the
water line, but they are vital for ensuring the quality and
reliability of the model. These aspects include how the
model handles different sources of error, such as bias
and drift, how the model explains its output and
reasoning, such as explainability and uncertainty, how
the model responds to different situations and inputs,
such as latency and robustness, and how the model
represents the real-world problem and data, such as
representativeness and resilience. These aspects are
often interrelated and complex, and they need to be
carefully considered and evaluated when testing an AI
model. Testing an AI model is not a simple task, but a
comprehensive and effective one.

Correctness is just the tip of the iceberg when it comes to rigorously and robustly
evaluating the performance of your AI model

Correctness

Bias

Explainability

Robustness

Drift

Uncertainty

Resilience

Representativeness
Latency

Page 8

How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Correctness
Correctness is the ability of a predictive model to fulfill its
functional performance goals. Correctness (accuracy, precision,
and/or recall) is frequently a main focus of model developers.

Correctness metrics vary by algorithm
type. When available, correctness
relates prediction results to ground
truth. When not available, other
comparisons are needed. Common
metrics include:

 Classifiers: Accuracy, Precision,
Recall, F1 score

 Regression: mean squared error, R2

 Unsupervised and generative
models: often rely on human
evaluators

 Reinforcement learning systems: a
combination of simulator scores and
human evaluation

For classifier models, “Accuracy” is
defined:

Correctness on the intended task is
typically the primary consideration for a
model developer. Without a sufficient
level of correctness, none of the other
measures given here matter.

Correctness is the measure of how well
a model predicts the correct or
expected output for a given input. It is a
basic and intuitive metric for assessing
the model’s performance on its
intended task.

Correctness is important for identifying
and improving the model’s weaknesses
and limitations. It helps to diagnose the
sources of errors, such as data quality,
algorithm design, or others.

Correctness is useful for comparing
different models or model versions.

? What is the expected output of the
model for a given input?

? Does the developers’ functional
performance metric align with what
matters most in operations?

? Can the model achieve its
correctness targets?

? How robust is the model under
different conditions and scenarios?

functional performance, prediction accuracy, goodness of fit Page 9

How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Interpretability
Interpretability methods provide insight into how a model produced
its output. These methods generally do not provide insight into the
underlying data generating process that the model was trained on,
but greater interpretability facilitates understanding the model’s
inner workings.

Intrinsic and/or Post-hoc? Intrinsic
methods restrict the complexity of the
model, while post-hoc methods analyze
a trained model.

Local or Global? Does the
interpretation method explain an
individual prediction or the entire model
behavior?

Model-Specific or Model-Agnostic?
Model specific methods can be faster,
but model-agnostic methods work with
more model types.

Textual explanations: This method
generates natural language
descriptions that explain the model’s
output for a given input.

Decision trees: This method converts a
trained model to show the rules behind
the model’s predictions.

Detect bias – interpretable models can
be checked for protected groups or
their correlates in training data.

Auditable – interpretable models can
be examined for purposes of debugging
or suggesting theories for further
testing.

User acceptance – humans rely on
explanations to develop trust.
Interpretable models can provide useful
explanations.

Education – can help users and
students learn from the model and
know when to use the model, or not.

Adaptation – interpretable models can
help users and developers adapt the
model to changing needs, preferences,
or environments.

? Who needs to interpret the model?

? How will the interpretability
measures be presented?

? How will the interpretation be used?

? What issues might confound the
provided explanations?

? How does user feedback get
incorporated into the model’s
interpretability?

explainability, SHAP (SHapley Additive exPlanations), mechanistic
interpretability, transparency, decision boundary

xkcd.com

Page 10

How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Bias
“Bias” can mean any of several different concepts when applied to
AI, including but not limited to: discriminatory or unfair treatment
(legal/fairness), underrepresented elements in the data
(representation), and differences in average outputs from the true
mean (statistical).

There are too many concepts of bias to
comprehensively list and define here.
Some types of bias can be measured
directly if ground truth is available, but
Others must be inferred. Some cannot
be simultaneously minimized.

Fairness bias often relates to
correlations in the data; the chosen
definition of fairness will inform
measurement. Representation bias can
occur when there is selection into the
training sample, so measurement can
be facilitated by distributional
measurements. Ground truth is often
not available, so statistical bias often
must be inferred from prediction error.

Teams should involve stakeholders to
identify and create strategies for
measurement and mitigation, when
appropriate.

Models may exhibit good overall
performance but still have unintended
bias that may result in harm. Fairness
bias can result in harm to individuals
and groups – a violation of the DoD
Ethical AI Principles. Representation
bias can diminish operational
effectiveness and suitability, and lead
to fairness bias.

Unintended bias can lead to negative
consequences, particularly for some
subpopulation such as minorities,
specific genders, professional groups,
or other underrepresented ones. E.g.,

 Model outputs that systematically
vary across groups

 Disparate treatment
 Social or economic harm
 Loss of trust

? What bias is intentional?

? How does the intentional bias tie to
mission objectives and
performance?

? What undesirable biases might be
reflected in your data and amplified
by the model?

? What fairness metrics best align with
your mission objectives?

Selection bias, representation bias, statistical bias, algorithmic bias, fairness,
disparate treatment

xkcd.com

Page 11

How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Robustness
Robustness describes how well a model performs outside of
conditions on which it was trained. Robustness is typically
categorized into two areas: natural (natural variations in input
data) and adversarial (perturbations caused by malicious attacks).

In evaluating robustness, testers should
consider both the smoothness of the
performance surface and the
performance in specific situations
relative to other models.

Natural robustness is evaluated
through variation in evaluation data.
This can be done by using different
datasets or data sources that reflect the
diversity and complexity of the real-
world data. Metrics should capture how
much the model performance degrades
under different levels of variation.

Adversarial robustness is evaluated via
manual or automated red teaming. Red
teaming simulates attacks by an
adversary who has some knowledge
and access to the model. Metrics
should capture how often the model is
compromised by adversarial inputs.

AI models can perform unpredictably
when deployed outside of the
conditions in which they were trained
due to emergent model behaviors and
a failure to generalize in ways that
conform to human expectations.

A lack of robustness can lead to
undesirable or harmful consequences
for users, stakeholders, or society at
large, such as loss of trust, privacy
breaches, discrimination, or physical
harm.

By measuring robustness, testers can
identify and mitigate potential risks and
vulnerabilities of AI models before they
are deployed in real-world settings.

Measuring robustness can lead to
design decisions to enhance system
quality and reliability, as well as better
user experience.

? How does the model handle errors
or failures and recover from them?

? What threats or attacks might the
model face from adversaries?

? How does the model handle red
team attempts to confuse it?

? How does the model adapt to
changes over time?

brittleness, adversarial resistance, overfitting, transfer learning Page 12

How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Resilience
Resilience describes how well a model recovers to desired
performance from a performance-degrading event such as a
failure. Resilience is reactive, while robustness is proactive.

Testing for lingering effects of stress
and perturbations may give insights into
model resilience

Testers should consider the following:

• The frequency and severity of
disruptions that may be encountered

• The time and resources required for
the system to recover and resume
normal operation.

• The impact of disruptions on system
performance such as accuracy,
reliability, safety, or user satisfaction.

• The mechanisms employed to cope
with disruptions such as error
detection, compensation, or learning.

A resilience curve will plot the system
performance over time under different
scenarios of disruptions or failures.

Resilience is a crucial aspect of the
system’s reliability, usability, and
trustworthiness.

Measuring resilience can help identify
and improve the system’s weaknesses.

The distinction between robustness
and resilience is clearer when dealing
with dynamic models, such as
autoregressive models. With a dynamic
model, future output depends on the
history of inputs and outputs, so errors
propagate forward in time.

A contemporaneous perturbation may
result in poor performance right now
(robustness issue) but also continued
poor performance after the perturbation
has passed (resilience issue).

? Is the model dynamic?

? How will testing measure lagged and
lingering effects?

? Can the model identify mistakes and
self-correct?

? How does the model handle errors
or failures and recover from them?

autoregressive, recovery time Page 13

How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Uncertainty
Uncertainty refers to the level of confidence users should have in
the outputs of a model. There are many sources of uncertainty,
including natural random variation, a lack of training data, and
others.

There are many types and sources of
uncertainty, including aleatoric
(inherent randomness), epistemic
(ignorance regarding what we know),
and approximation (how well the
chosen model approximates reality).

Many uncertainty quantification
methods exist, and the best choice will
depend on the task, modeling
framework, and your assumptions
about the use case. Common methods
include subsampling, analytic
approaches, Monte Carlo simulation,
and ensembling.

One should ensure the validity of the
chosen uncertainty quantification
method by assessing agreement with
the true uncertainty.

To improve the performance, reliability,
and interpretability of the model by
providing a measure of confidence or
error for predictions. This helps users
or stakeholders to trust and use the
model predictions more appropriately.

To identify sources and types of
uncertainty affecting the model, such as
natural variation, lack of training data,
model complexity, or adversarial
attacks.

To reveal the regions of high or low
uncertainty in the input or output space.
This helps testers or developers
evaluate the model’s generalization
ability and reliability and prioritize the
areas needing more attention or data.

? How certain do we need to be of a
model’s predictions?

? Will the model be used in a context
that was rare in the training data?

? How does uncertainty vary across
subpopulations?

? Is the estimated uncertainty properly
calibrated?

Epistemic uncertainty, aleatoric uncertainty, confidence intervals, Bayesian
inference, stochastic processes, Monte Carlo methods, outlier detection

xkcd.com

Page 14

How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Drift
Drift is the change of model performance over time due to changes
in its environment. Drift can apply to the data, the model, or the
context/concept underlying the model use case.

Model performance should be tracked
with updated data, and changes in
performance should be investigated.

Assessing data distribution changes
over time can reveal sources of drift.

To measure data drift, use feature-
based methods to compare the
statistical properties of the features in
the training and production data.

To measure model drift, one can use
output-based methods to compare the
predictions of the model on the training
and production data.

To measure concept drift, compare the
performance of the model on the
training and production data. Such
comparisons can capture changes in
the predictive power, sensitivity, and
more.

There are various types of drift that
affect AI models: drift may occur when
the distribution of inputs or outputs
change over time or when the
relationship between inputs and
outputs changes. Careful modeling can
account for some kinds of data drift
during development, but the source of
drift is often not known or observed. All
drift symptomatically manifests as
change in performance (typically
degradation) over time.

Monitoring for changes in performance
and changes in the data can prompt the
need to retrain the model, collect more
data, update procedures associated
with data collection or use of the model,
or investigate other sources of
degradations more closely.

? How can the model monitor or report
data, concept, and model drift?

? How will updates correct for the
effects of drift?

? How can the model be updated,
retrained, or revalidated for drift?

? What is the desired data distribution
under expected conditions?

Concept drift, context drift, data drift, model drift, model decay, online
learning, streaming data, non-stationarity, model monitoring Page 15

How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Representativeness
Data used for model training must be sufficiently representative of
the real operational environment in which the model will be
deployed. Model performance depends on the training data.

Training data, testing data, & validation
data should all be representative of the
operational environment, and the model
architecture should be sufficient to
capture salient operational features.

Test data & validation data should be
different from training data.

Typical measures will show the degree
of similarity between the planned
dataset and the salient features of the
operational context. Example measures
may include: data similarity, data
diversity, data coverage, data currency,
and data volume.

Similarity and sufficiency must normally
be defined by subject matter experts in
the operational context.

To reduce the risks of overfitting,
underfitting, or bias in the model.

To evaluate the model performance
and characterize how it will generalize.

To identify and improve data quality
and quantity issues and the
architecture of the model.

To help ensure that the model meets
user expectations, needs, and
preferences in the real operational
environment.

Representative training data that aligns
with “real” operational data in all
significant aspects is vital to achieving
desired model behavior.

Worthwhile testing critically depends on
the test data being representative of
real operational data.

? What variables define
representativeness for the
operational context?

? Are those variables captured in an
operationally relevant way?

? What is the fidelity of the data with
respect to actual operations?

? Does the operational context and
associated data change over time?

Class imbalance, sampling bias, dataset diversity Page 16

How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Latency
Production AI models must operate at a speed sufficient for their
users. Latency can depend on model complexity, input data size,
hardware performance, and other factors.

Latency is measured by timing
responses of the model.

Latency must be measured in an way
representative of the operational
environment to be meaningful.

Profiling tools can measure the time
taken by model components to help
identify the bottlenecks.

Benchmarking tools measure the
latency of the model on different
hardware platforms, such as CPUs,
GPUs, TPUs, etc. This can help
compare the trade-offs between speed
and accuracy, and choose the best
platform for deployment.

Load testing tools measure latency
under different levels of demand or
request frequency or size.

In many applications like real-time
analytics or autonomous navigation,
latency constrains usability.

Latency also affects the smoothness of
the user experience even in less time
sensitive applications.

Running a machine learning model in
production may incur high costs due to
the use of cloud computing, storage, or
bandwidth. Measuring latency can help
select the most efficient and cost-
effective platform and configuration for
deployment.

To troubleshoot the model’s behavior in
real-time. Measuring latency can help
detect and diagnose problems due to
drift, system failures, or performance
degradation and take appropriate
corrective actions.

? Does the model operate at a speed
sufficient for its intended operation?

? Is there significant worst-case
variance in the latency?

? Are there bottlenecks that could be
addressed to boost inference
speed?

? How will latency be measured in
production?

inference speed, latency, network latency, throughput, edge computing,
response time Page 17

Thinking about
Testing Methods
This Section:

+ Outlines types of tests unique to AI

+ Presents ideas on test design for AI models

+ Discusses balancing test implementations 02
Page 18

Section 1, Thinking about Performance,
introduced some considerations about
the performance of an AI model for DoD
applications and ways to measure its
performance. With those considerations
in hand, this section will introduce
considerations for fleshing out the test
strategy into an implementable plan.

Test
Types,

Designs
&

Methods

Test implementations must be balanced
between the strengths and limitations of
test methods.

Testers must account for priorities and
available resources when selecting from
the appropriate test types and test design
approaches. Though some methods
used in test planning require adaptation
or invention, many of the techniques in
testers’ toolboxes will continue to be
relevant for AI models and systems.

Test design & test type selection will be
informed by both the data and the model.

Page 19

Test Types for Comparisons

Pairwise testing is a technique where
test cases are generated such that all
possible combinations of any two
variables (or parameters) are covered
at least once. The goal is to
significantly reduce the number of test
cases while still capturing most of the
defects that would have been found
using exhaustive testing. In machine
learning, examples include varying
pairs of hyperparameters* to avoid
exhaustive grid search or testing the
interaction between pairs of features.
Pairwise testing does have limits.

In more complex models, analyzing
every pair of parameters can be
computationally costly, requiring either
statistical sampling or testing pairs at a
higher level of abstraction that
compromises on rigorous definition.

There are various test types for testing model performance. The types shown here differ
in how the model is compared and how data are used.

A/B testing is a method where the
response of two variants of the program
(A and B) to the same inputs are
compared to determine which of the
two variants is better. It is a statistical
testing approach which typically
requires the comparison of test results
from several test to determine the
difference between the programs.

A/B testing is common when comparing
a new variant of a model in production.
As an example, 50% of a website’s
users might see content recommended
by the current production model, while
the other half see recommendations
from a new variant. If tests of the new
model show improvement, the model is
swapped in, otherwise the system
keeps its current state.

Back-to-back testing, also known as
differential testing, is related to A/B
testing, but rather than comparing two
variants of the same model, the model
under test is compared with a different
model.

The goal of back-to-back testing is
usually to identify defects by
contrasting performance of the two
models. The second model could be in
an existing system that is being
considered for replacement or it could
be a model that is used solely for
testing because it lacks properties
necessary for production use, e.g. it
runs too slowly.

Page 20

Pairwise Testing A/B Testing Back-to-back Testing

Top-level parameters whose values control the learning process. E.g., train-test
split, learning rate, activation function, or hidden layers.

Hyperparameters

Test Types for Adversarial Threats

Adversarial testing is a technique that
uses adversarial methods to identify
and address the vulnerabilities of a
model, making it more resilient and
trustworthy.

One type of adversarial method is
adversarial attack, where an attacker
subtly perturbs valid inputs that are
passed to the trained model to cause it
to provide incorrect predictions. For
example, to defeat spam filtering a red
team might slightly change an email’s
wording to avoid classification as spam
while remaining readable to the
intended audience. Another type of
adversarial method is data poisoning,
where an attacker manipulates the
training data to cause the model to
behave incorrectly.

AI models may or may not be secure against malicious attacks that aim to manipulate
their inputs, outputs, or behaviors.

A red team is a group of testers that
uses adversarial methods to probe a
model and explore its attack surface,
which can be large and unwieldy for
some models. Red teaming can reveal
unexpected model behavior, coverage
gaps in the data, gaps in procedure,
security vulnerabilities, other points of
stress in the model, and evaluate the
effectiveness of current defenses. It is
appropriate during all stages of the
lifecycle, including deployment.

Red teaming is most often used to
emulate potential adversarial attacks
and is associated with cyber testing,
testing the code, and testing the
statistical soundness of the model, but
other aspects of the model can be red
teamed as well. For example, data
curation policies, monitoring and
feedback loops, auditing mechanisms,
and guardrails for proper use can all be
red teamed.

A red team can be internal or external
professionals, or crowd-sourced
testers, depending on availability,
expertise, and budget. Crowd-sourcing
can provide a larger and more diverse
pool of testers, but it may also pose
challenges in quality, security, and
ethics.

Red teaming can be costly for complex
and large models, but some ways to
reduce cost and increase efficiency are
red teaming events, such as DEF CON,
where experts can congregate and
contribute, network, learn, and give
feedback.

Policies and procedures are needed to
ensure safe and effective red teaming,
grade efforts and results, and capture
feedback.

Page 21

Adversarial Testing Red Teaming Manning a Red Team

Test Types

Experience-based testing refers to the
practice of leveraging the skills,
knowledge, intuition, and expertise of
testers to identify potential issues in a
software system. Error guessing is
typically based on testers subject
matter knowledge, typical developer
errors, and failures in similar systems.
An example could be the use of
knowledge about how ML systems
have failed in the past from a database
like the AI Incident Database.
Experience-based testing is limited for
scalability and is inherently subjective.
This method might miss issues that
could be captured through more
systematic testing approaches.

In cases where the expected outcomes of a model are less well understood, these test
types may contribute to the overall characterization of the model.

Metamorphic testing is a software testing technique that's especially useful when you
have a system where it's hard to know the "correct" output for a given input, which is
often the case with machine learning models. Unlike traditional testing methods,
which compare the output to a known "correct" answer, metamorphic testing focuses
on the relationships between inputs and outputs.

The first step is to identify properties or rules that the output should satisfy when the
input is changed in specific ways. These are called metamorphic relations (MR).
Next, for a given input the model's output is observed. Then, the input is transformed
according to the established MRs, and the model is re-run. The outputs are then
checked to see if they maintain the metamorphic relations. For example:

• For speech-to-text, slight changes in playback speed should not change the
output.

• For clustering, adding a point at the centroid of each identified cluster should not
change the number of clusters or any existing point's assignment, and should
assign each new point to the cluster that generated it.

Experience-Based Testing Metamorphic Testing

Page 22

Test Design

Traditional test design allocates design
points in a way that captures maximum
variation in the data for testing. This
often assumes a smooth response
surface, not present in many AI
systems.

AI systems may exhibit non-smooth
responses, especially near edge cases
and low density areas of the training
space. Testers should ensure that
those areas are not omitted from
testing and may wish to prioritize those
areas for testing in some situations.
Model testing should emphasize
regions of low density coverage in the
training data.

Test design focuses on selecting specific data points for analysis, enabling you to draw
conclusions or make inferences about a larger population or phenomena.

Common factor selection methods
• SMEs provide valuable insights from

a domain-specific perspective.

• Automated screening applies
automated tools to identify potential
issues with the model such as
overfitting, underfitting, and data
leakage and helps ensure
comprehensiveness and rigor.

Common test design methods
• Cross-validation: evaluate

performance across k smaller sets
(or folds) of the data, then average
the results

• Holdout validation: separate the
data into training, test, and validation
sets

• Bootstrapping: generate multiple
training datasets by resampling the
data with replacement. Train on the
multiple training datasets, then
evaluate on the original dataset

The process of identifying the
factors that are most important to
the model’s performance and
ensuring they are included in the
test design and test data

Factor Selection

Page 23

Testing paradigms: beyond either/or

Many testing paradigms are often
framed as extremes or an either/or
– often pitting automated testing
solutions against processes with
ongoing human input.

Synthesize across testing paradigms to strike the right balance.

Reality is typically far more gray,
and well balanced solutions will
likely leverage a combination of test
implementations.

Testing professionals should
educate themselves on the
strengths and limitations of different
testing paradigms and choose the
best fit for their context and goals.

Page 24

Balancing Test Implementations

Continuous
Testing

Discrete
Test Events

Tests occur at regular intervals or at model updates
or other triggering events

Follows pace of development, changes in model
over time are observed

Can add complexity to scheduling and resourcing,
often less extensive due to computational
constraints

Tests occur at specified points in time

Often easier to schedule and resource, can be
larger in scope because computational resources
are prioritized for testing

Can be out of sync with developer pace

Page 25

Balancing Test Implementations

Automatic
Testing

Manual
Testing

Tests specified in code and run at set intervals or
every model update

Cheap to run once tests are developed, fast, good
for catching regressions, thorough, and good for
testing predefined logic cases

Adds to code maintenance burden, difficult to
automate complex evaluations

Tests conducted by an expert

Handles complex tests difficult to specify in code

Expensive in long run, slow, can be less thorough

Page 26

Balancing Test Implementations

Black Box
Testing

White Box
Testing

Tests that focus on feeding inputs to the model and
evaluating its outputs

Requires less privileged access, not dependent on
model architecture

Can be computationally expensive, difficult to
interpret results

Tests that require knowledge of the internal
structure of a model, such as its parameter weights
and training data

Can be more interpretable, some adversarial
techniques require internal access

Can be difficult to negotiate access to sensitive
intellectual property, some techniques limited to
particular model architectures

Page 27

Balancing Test Implementations

Live Test
Events

Model &
Simulation

Tests occur in environment as close to operational
one as possible

More operationally realistic

Expensive, infrequent, modification harder

Tests occur in silico (i.e., experimentation
performed by computer) using data from model or
simulator.

Highly scalable, can be quickly modified

Might have significant differences from deployed
environment

Page 28

Thinking about
Data
This Section:

+ Describes data as the foundation of AI models

+ Explains how data affects model performance and testing

+ Provides key considerations tied to the data lifecycle

+ Provides details on common data sources and data types 03
Page 29

Thinking about Data

Machine learning turns the programming paradigm on its
head. Traditional programming specifies some desired
process a system should follow or an output it should
produce. With AI models, however, the system learns from
examples rather than explicit instructions.

Data influences model performance and can introduce testing challenges

Data is the foundation upon which AI models are built, and
any shortcomings can result in poor model performance. This
paradigm shift introduces new and increased risks compared
to traditional software that should be captured via testing.

The rest of the ‘Thinking about Data’ section covers:

Traditional Paradigm

Input data

Program
System Output data

Learning Paradigm

Input data

Output data
System Program

The Data Lifecycle

Select, clean, engineer, split, curate, and
verify & validate

Common Data Types

Audio, image, text, video, tabular

Common Data Sources

Commercial, laboratory, manually collected,
model output, open source, synthetic

NIST’s AI Risk Management Framework and CDAO’s National AI Infrastructure T&E Capability
(NAITIC) Gap study discuss additional differences between software and AI models.

Learn More

Page 30

Assuring data quality across its lifecycle
Testers must ensure that data are complete, diverse, and realistic, and that the data
lifecycle steps are documented, validated, and reproducible.

Verify & Validate

Ensure the integrity, accuracy, and quality of the data

1 | Select
Identify, locate, and

acquire needed sources of
data

3 | Engineer
Structure data, engineer

features, and label as
appropriate

5 | Curate
Version and store data,

code, and other
information

2 | Clean
Identify and mitigate

errors, missingness, and
poor quality

4 | Split
Split the data appropriately

into subsamples for training,
testing, and validation

This process is far from linear! It’s inherently iterative!

Important!

Page 31

How is it relevant to testing? What are best practices? What should testers ask?

1 | Select & acquire your data

You need a lot of data – Data are often
noisy. Testing requires sufficient
coverage of the operational space;
identification of edge cases and
exploration of the operational space for
unexpected behavior may also require
large amounts of data. Response
surfaces of AI models may not be
smooth, so traditional experimental
designs, including DOE, may provide
insufficient coverage of all possible
values the data could take to capture
points of failure.

Testing real world performance and
reliability of the model critically
depends on the operational realism of
testing data.

Bringing operationally realistic data
forward in the development and testing
process can be costly, but failing
testing and retraining can be costly, as
well. Synthetic or simulated data can
help manage this trade-off, but one
must carefully consider the fidelity with
which the data is generated.

? What rights does the government
have with respect to the data?

? What are the data sources? Is
sourcing legal and ethical?

? How can you ensure that the data
are complete and operationally
realistic?

? Think about how the data are
generated. Is there relevant
information that is not observable?
Does the data contain known bias?

Data must be related to the use case, be
operationally realistic, and have variation.

Page 32

How is it relevant to testing? What are best practices? What should testers ask?

2 | Clean your data

Iterate V&V with data cleaning.

Normalize data tables as needed for
curation.

Document actions. Decisions made
when cleaning data often have
advantages and drawbacks.
Documentation promotes transparency
and facilitates auditing.

Do By Code! Use code to clean the
data and maintain a repository of code
that reproduces all cleaning steps to aid
transparency and reproducibility. Avoid
manually cleaning data in
spreadsheets!

Data are rarely ready to be used out of
the box. Training data must be
cleaned, and the cleaning steps must
be validated. Test data should be
appropriately cleaned and validated as
well. These are actions that testers
should confirm.

In response to model or data errors
discovered in testing or V&V, additional
iterations in data cleaning may be
required.

Subsequent needs for new data will
also drive additional data cleaning.

? What does missingness mean to the
applicability of the data?

? What are the valid values, have
definitions or ontologies changed
over time?

? Where is the data incomplete?

? What might affect the operational
realism of the data?

? Is there evidence of data poisoning?

? Are the cleaning processes
sufficient?

Identify and correct or mitigate entry errors;
incorrect or corrupted information; incorrectly
formatted entries; duplicate, incomplete or
missing data; and other quality issues.

Page 33

How is it relevant to testing? What are best practices? What should testers ask?

3 | Engineer your data features

Do by code! Using code to engineer
your data and maintaining a repository
of code that reproduces all decisions
aides in review, auditing, and
reproducibility.

Decisions made when engineering
features often have advantages and
drawbacks. Documenting your
decisions promotes transparency and
facilitates auditing.

Raw data sets need to be combined
into a single data set and transformed
into a format that makes sense for use
in machine learning. The
transformation steps and resulting data
should be V&V’d.

Inputs and targets (outputs or reward
signals), including labeling, must be
specified. Labeling is often cited as
being a critical, but costly and labor-
intensive part of this process.

? Are the engineering steps
appropriate?

? What are the relevant features for
the problem at hand?

? Is the engineered data appropriately
operationally representative?

? Were the data feature engineering
steps verified and validated? And
documented?

Feature Engineering transforms raw or cleaned
data elements into a format that is useable by
the algorithm.

Page 34

How is it relevant to testing? What are best practices? What should testers ask?

4 | Split your data

Do By Code! Maintaining a repository
of code that reproduces all preparation
decisions aides in review, auditing, and
reproducing results.

Re-Validate! Generally, all sample
splits should be representative. Re-
validate your subsamples for
operational realism and
representativeness after splitting.

Similar to how a teacher evaluates
student learning, providing the answers
to a test before taking it does not
produce a trustworthy evaluation.
Models should be tested against
operationally representative data that
they did not see during training.

Ensuring reproducibility: By splitting the
data into training, validation, and testing
sets, we can ensure that our results are
reproducible. Note: terminology differs
across fields, a validation split is used
for hyperparameter optimization – not
validation of the data!

? Are the data cross-sectional, time-
series, or panel?

? What variables define
representativeness?

? How to choose the temporal split
points? Does the distribution
change over time?

? How to choose subsample sizes and
the number of subsamples? (Should
test set be 10% or 30%, single
train/test split, k-fold cross validation,
etc.)

? Could testing data have leaked into
the training set?

Splitting data refers to partitioning a data set
into various subsamples. Recall that AI learns
from the data in its training sample. To
properly evaluate an AI model, it must be
tested on data that it has not learned from.

Page 35

How is it relevant to testing? What are best practices? What should testers ask?

5 | Curate

Proper version control is not just for
code and models! It can be used for
data and meta data, too.

Take care in managing data fidelity;
balance the cost of curating
operationally realistic data with that of
synthetic data and ensure model
performance remains satisfactory.

Evaluate, assess, and audit all curated
information for completeness,
correctness, transparency and
usefulness on a deliberate schedule.

Curation of the data should be
adequate to facilitate testing, secure
enough to guard against adversarial
attack and spills and corruption, and
robust enough to facilitate versioning
and rollback.

Proper curation facilitates transparency,
auditing, and testing.

? Who are the stakeholders and
collaborators across the dataset’s
lifecycle

? Are the data and V&V and other
auditing results adequately
documented in a Data Card?

? Where and how are the data stored
and accessed? How is cleaning and
engineering code stored?

Data Curation refers to deliberate, active
management of the data over time alongside
metadata, documentation, cleaning and
engineering code, and V&V and auditing
results.

Page 36

How is it relevant to testing? What are best practices? What should testers ask?

* | Verify & validate your data

Validation of the data should be on
going rather than just at some fixed
point in the lifecycle.

Data properties, contents, and
ontologies should be reviewed in light
of changing operational environments
and user feedback.

Engage and iterate with data providers,
subject matter experts, domain experts,
developers, and end users.

The data should be sufficiently
representative of the real operation for
which the model will be deployed, and
the processes supporting and defining
the data lifecycle should be sufficient to
support the use case and capture the
salient information regarding
operational outcomes.

Each of the previous slides in this
section implicitly describes specific
V&V activities relevant to that part of
the lifecycle.

? How are low density regions in the
data treated (e.g. edge cases)?

? How will the data will be stored,
accessed, and used?

? How are the data generated - is
there any nuance that might affect its
use or impede its ability to
sufficiently capture salient
information?

? What might be missing, and what
assumptions were made in cleaning
and engineering?

Verification and Validation ensures the
integrity, accuracy, and quality of the data.
The data should be secure, operationally
representative, and of sufficient quality and
quantity to enable machine learning.

A “validation data set” is not the same as the validation of the data (see p 35.)

Important!
Page 37

Common Data Types

The range of data modalities can shape
testing priorities. Some types that are
good use cases for AI applications in
DoD are uncommon in industry.

The novelty of some DoD data types
may drive the need for new evaluation
methods, to assure data quality and
representativeness.

This diversity of DoD environments,
data modalities, and mission purposes
require a nuanced understanding of the
mission objectives and challenges to
inform the handling of datasets.

Common data types include audio, image, tabular, text, and video. Data types more
unique to DoD uses include LIDAR, RADAR, SONAR, electromagnetic spectrum data.

Recent progress and innovations in AI
model applications have been borne
from advances in managing datasets.
For example, normalization and
regularization have accelerated
progress in generative transformers for
images and video.

Normalization scales the input features
to a similar range, which helps the
model converge faster.

Regularization adds a penalty term to
the loss function to prevent overfitting.

• What preprocessing techniques
have been conducted on the varying
data types?

Page 38

How is it relevant to testing? What are best practices? What should testers ask?

Common Data Sources

The nuances of data evaluation and its
required rigor will depend on a variety
of factors. The origin of the data can
influence testing priorities.

Many data sources can introduce
opacity regarding data chain of custody
and curation processes, posing a
potential security risk. These risks give
rise to additional testing requirements.

A lack of historical knowledge about the
data’s provenance could introduce
uncertainty about the amount of testing
required.

This includes commercially curated datasets, open source data, lab environment data,
manually collected data, real environment data, synthetic data, and other types of data.

• Create and maintain an inventory of
data sources and documentation.

• Ensure that data-related legal
agreements and informed consent
procedures document data access
and re-use rights.

• How is representativeness validated
for data sources?

• Has the data from a source
undergone rigorous quality control
and is it reliable?

• What is the chain of custody from a
data source and how it is verified?

• Does the test team have adequate
historical knowledge of the data’s
provenance and processing?

Page 39

How is it relevant to testing? What are best practices? What should testers ask?

Thinking about AI
Models
This Section:

+ Describes the AI model lifecycle and its steps

+ Describes common machine learning paradigms

+ Describes common machine learning algorithms 04
Page 40

Thinking about AI Models

Testers should consider the problem type and complexity, the
solution objectives and constraints, and the trade-offs and
challenges of machine learning when planning a model
evaluation. Different problems require different metrics and
methods to measure the model performance and accuracy.
The evaluation should align with the solution goals and
requirements and account for the solution constraints and
limitations. The evaluation should also consider the potential
issues and difficulties of machine learning, such as bias,
overfitting, or interpretability. The most important aspect
depends on the problem and context, but the evaluation
should be valid, reliable, and meaningful.

Testers must ensure that the model is appropriate, accurate, reliable, secure, and
compliant with the problem domain and the solution objectives.

The rest of the ‘Thinking about AI Models’ section covers:

The AI Model Lifecycle

Model type selection, feature selection, train
& test, evaluate, deploy, monitor &
maintenance

Common Algorithm Types

Neural nets, linear regression, decision tree,
support vector machine, k-nearest neighbor

Common Learning Paradigms

Supervised, unsupervised, reinforcement

Page 41

AI model performance lifecycle
Testers must ensure that the model is appropriate for the given problem and well
curated and documented across its lifecycle. The lifecycle is outlined below.

4 | Evaluate
Ensure the performance

of the model against
solution objectives

3 | Train & Test
Assign parameters &
iteratively train & test

1 | Select
Pick an architecture that

aligns to the problem

2 | Define
Specify features, metrics,

and interpretation methods

5 | Deploy
Deploy model to

production with suitable
methods and tools.

6 | Maintain
Monitor and maintain
model performance

This process is far from linear! It’s inherently iterative!

Important!

Page 42

How is it relevant to testing? What are best practices? What should testers ask?

1 | Select your AI Model Architecture

The most complicated architecture is
not always necessary. Begin iteratively
with something basic and then add
complexity if accuracy targets are not
met.

Simpler architectures may offer higher
explainability but may have less
predictive capability.

In some cases, AI may not be
necessary at all. Try to identify if
improved data collection or a
deterministic algorithm would be
sufficient.

The choice of model architecture will
set constraints on the performance
criteria mentioned before. This is
typically via architecture genre and
complexity.

Different architectures or algorithms
have different assumptions, limitations,
and performance criteria that need to
be tested and evaluated.

Testers should understand how
interpretability changes as complexity
increases. The right balance between
complexity and interpretability hinges
on traits of the specific use case.

? Is the complexity of the model
architecture appropriate for the
accuracy, interpretability, and
latency requirements?

? Does the model architecture follow
from successful employment in
similar purposes and/or use cases?
If not, why wasn’t another
architecture selected?

? Does the model architecture fit within
the operational constraints of the
hardware that the model will be run
on once deployed?

A model architecture will set limits on model
performance and complexity. The optimal
model architecture will depend on the task and
resource requirements.

Page 43

How is it relevant to testing? What are best practices? What should testers ask?

2 | Define your Model Features

Define features in code! Using code to
engineer your features and maintaining
a repository of code that reproduces all
decisions aides in review, auditing, and
reproducibility.

Don’t assume features stay relevant or
useless forever. Reevaluate their utility
periodically.

This stage defines the data features
that will be used by the model, the
performance metrics that will measure
the model accuracy and reliability, and
the interpretation methods that will
provide insight into the model logic and
decisions. The data features,
performance metrics, and interpretation
methods should be suitable for the
model type and the problem domain,
and they should be tested and
validated for their quality and suitability.

? Are the selected features relevant to
predicting the model’s output?

? Have the developers checked that
features used do not serve as
proxies for protected classes?

? Are the features observable in
available datasets?

? Are the features meaningful to
humans?

? Are the features static or could they
be changed by an adversary?

Features are transformed raw data used by the
model in training. Sometimes features are
engineered, and in other cases they are
learned by the model itself. Relevant features
must be selected either prior to or during
model training.

Page 44
If area and price are in the input dataset, one could create the feature
price per square foot which may result in a better performing model

Example

How is it relevant to testing? What are best practices? What should testers ask?

3 | Train and Test your Model

Document hyperparameters in a
manner sufficient to reproduce the
training run.

Utilize experiment tracking tools to
reduce manual documentation
overhead.

During training, the model’s parameters
are iteratively updated by minimizing a
loss function with training data.

Testing is measuring how well the
model performs on data that it has not
seen before. The model training and
testing processes should include
checks for model correctness and
latency.

? What are meaningful metrics of
performance?

? Does testing align with the
operational space

? How much testing is adequate?

? Are training hyperparameters such
as random seeds and learning rates
documented?

? How does performance differ among
subgroups in the test set?

? How should test results be
monitored for drift?

Training involves iteratively updating a model’s
parameters by minimizing a loss function with
training data. Once a model is trained, its
performance is estimated by testing on data
split out for that purpose.

Page 45

How is it relevant to testing? What are best practices? What should testers ask?

4 | Evaluate your Model

Use cross-validation techniques to
estimate how well the model will
generalize to new data.

Use appropriate performance metrics
that are meaningful in the use case.

Check for bias and ensure that the
model is fair and unbiased.

Ensure that the model is interpretable
and can be explained to stakeholders.

This stage involves checking and
confirming the model’s alignment with
the solution objectives and
requirements. The model is evaluated
on different types of data that was held
back from training data—the validation
dataset. The model trade-offs and
challenges, such as overfitting,
underfitting, or interpretability is also
assessed and addressed in this stage.
The model’s security and compliance
issues are also ensured in this stage.

? Is the model architecture and
algorithm appropriate for the
problem domain?

? Were the hyperparameters
optimized for performance?

? Was model trained on a separate
subset of the data and evaluated on
a different subset?

? How well will the model generalize to
new data when cross-validation
techniques are used?

Check and confirm model’s alignment with
solution objectives and requirements.
Iteratively evaluate model on representative
data types. Monitor and address model trade-
offs, challenges, security, and compliance.

Page 46

How is it relevant to testing? What are best practices? What should testers ask?

5 | Deploy your Model

Monitor model performance in the
deployed environment. While, on going
model testing is not necessarily
standard DOD practice, performance
and other metrics of a deployed model
are likely to change over time.

Use gradually scaling rollouts to identify
issues with a subset of users before
risking widespread failure.

In this stage, the model is deployed
using appropriate methods and tools,
such as cloud services or edge
devices. The model performance and
functionality are monitored and
maintained throughout its life, so
deployment should include setting up
the methods and tools for monitoring
performance.

The model deployment process should
be tested and ensured for its scalability,
adaptability, availability, and fault
tolerance.

? Does the deployed model’s
performance match what was
expected from earlier testing?

? How can graduated fielding and/or
beta users be utilized to reduce risk
and test burden?

Once the model is ready, it is exposed to users
in production. However, development and
testing of a model is never finished. Updates
and testing continue for the life of the
deployment.

Page 47

How is it relevant to testing? What are best practices? What should testers ask?

6 | Maintain your Model

Monitor model performance in the
deployed environment.

Automate tests and monitoring as
possible to reduce manual overhead.

Model and/or system instrumentation
and data collection automation is vital
for model evaluation and maintenance.
Often one of the hardest things is
recording the data in the field.

The T&E strategy should identify what
instrumentation is needed, who
provides it, and the organizational roles
and responsibilities for verifying,
validating, and accrediting it.

The model needs to be constantly
updated and tested throughout the
deployment period. Updating the model
means retraining it with new or revised
data, or changing its structure or
parameters. Testing the model means
measuring its performance on the new
data or situation. The updating and
testing process is iterative and never-
ending, as the model has to adapt to
the changing needs and feedback of
the users. The updating and testing
process should also be evaluated and
enhanced for its speed, stability, and
adaptability.

? How does the model fit into the
broader curation approach for the
project?

? Is the monitoring approach sufficient
to detect drift before it causes
mission failures?

? How much and what instrumentation
is needed for the test strategy.

? Will the planned instrumentation
yield the needed model metrics?

Monitor and update model in production.
Retrain or modify model with new or updated
data. Test model on updated data or
environment. Repeat update cycle as needed.

Page 48

Common Learning Paradigms

These models find a function that maps
input data to output data (i.e., labels),
by iteratively adjusting a set of
parameters and calculating the
difference between the model’s
answers and the correct answers. This
is called the training process.
Supervised models are commonly
evaluated on their predictions using
test data that was held back during
training. The paradigm is used in
Classification and regression.

The nuances of AI model evaluation will depend on a variety of factors, including the
model’s learning paradigm. Some systems use combinations of multiple paradigms.

These models identify underlying
patterns or structures within the data
without mapping to known ground truth.
Evaluation of unsupervised learning
models can be challenging because
their assessment often relies on expert
judgement of the modeled
output. Unsupervised models are used
to characterize the unconditional
distribution of the data, often by
grouping observations based on
similarity as with clustering and
association problems.

These models learn how to take
courses of action in an environment
from trial and error based on rewards
for being correct and penalties for being
incorrect. To test reinforcement
learning models, it may be necessary to
use a dynamic test environment that
allows testers to assess how the model
interacts with and adapts to its
surroundings. The approach trains an
algorithm through interactions with the
environment and a sequence of
rewards for optimal behavior.

Supervised Learning Unsupervised Learning Reinforcement Learning

Page 49

Common Algorithm Types

Many machine learning algorithms are
useful for more than one type of
analytical task. For instance, support
vector machines are commonly used
for either regression or classification
tasks.

While there are many variations of each
of these approaches (classification,
regression, clustering, and generative),
this section will outline a basic
introduction to the concepts and
provide some key consideration for
testers.

Reflecting differing communities, some
overlap exists in calling these
algorithms versus analytical
approaches or statistical methods.

The next section introduces some of the common types of algorithms used in machine
learning development.

Page 50

You should know What should testers ask?

Examples in DoD systems

Common
Algorithms

• Automatic target recognition systems
such as DARPA’s Target
Recognition and Adaption in
Contested Environments (TRACE)

• Predictive maintenance on
helicopter engines in the 160th
Special Operations Aviation
Regiment (SOAR)

? What is the purpose of the model?

? How should the model be evaluated
and what are the evaluation metrics?

? What are the characteristics of the
training and test data in terms of its
diversity, realism, and coherence.

? Are the features of the test data well
aligned to that of the training data?
Are the training and test data
representative of the expected
context of the model?

? What are the limitations of the
model?

? What is the expected behavior of the
model in operating contexts outside
of the design context?

Classification models are a type of supervised learning model used
to predict the category or class of new, unseen data based on the
model learning from a labeled dataset.

Classification

• Evaluation metrics include accuracy,
precision, recall, F1 score, and more

• Hyperparameters are set before
training begins and can have a
significant impact on the
performance of the model

• Overfitting is a common problem in
classification models. Overfitting can
be mitigated with techniques like
regularization, early stopping, data
augmentation, dropout, and
ensemble methods

Logistic regression, neural networks, K-nearest neighbors, decision trees,
support vector machines Page 51

You should know What should testers ask?

Examples in DoD systems

Common
Algorithms

Regression has been applied many
times over many decades. A few
examples are:

• Estimating years of service
remaining for a service member

• Predicting cost of a project

• Estimating yield for explosives

• Predicting component time to failure

? What is the purpose of the model?

? Are both average and maximum
errors acceptable?

? If the regression method assumes
certain properties of the data or
residuals, are those assumptions
valid?

Regression models involve input and output of continuous values
and vary from simple linear regression to many more complex
types.

Regression

• Regression as an algorithm or a kind
of analysis is not the same as
“regression testing”

• Regression problems can be turned
into classification problems by
binning

• Normally, regression is used in
applications in which a continuous
value must be predicted from
another continuous value or multiple
values. An example could be
predicting the numbers of hours
before a component fails from the
measured viscosity and temperature
of the component’s lubricant.

Linear, multivariate, polynomial, LASSO, ridge, and Poisson regression Page 52

You should know What should testers ask?

Examples in DoD systems

Common
Algorithms

• Identify operational cells from
location tracking data

• Categorizing types of users on a
network based on activity logs

• Social network analysis to identify
threats to current events

? What is the purpose of the model?

? Do clusters align with what ground
truth is known?

? What is the purpose of the model?

? How should the model be evaluated
and what are the evaluation metrics?

? What are the characteristics of the
data to be clustered and what are
the defining characteristics of the
desired clusters?

? What are the limitations of the model
and how should it perform when
operating on data that are approach
the boundaries of the operational
use case?

Clustering models are a type of unsupervised learning model used
to group similar points or “clusters” based on their features.

Clustering

Page 53

Clustering algorithm output can be
highly influenced by initialization
conditions and user-selected
parameters.

The definition of similarity is typically
developed by subject matter experts
that are knowledgeable in the expected
use case for the model.

Some evaluation metrics for clustering
models include silhouette score,
Davies-Bouldin index, Calinski-
Harabasz index, homogeneity score,
completeness score, and V-measure.

The best partition and optimal cluster
number is typically determined in the
context of the use case.

K-means, hierarchical, DBSCAN, Mean-shift, spectral clustering

You should know What should testers ask?

Examples in DoD systems

Common
Algorithms

• Task Force Lima has been formed to
assess, synchronize, and employ
generative AI across the DoD

• Large language models are being
explored in many areas to better
understand appropriate use cases

• Research at DARPA aims to extend
generative capabilities using cross-
modal (text, image, video) data

? What is the purpose of the model?

? How will we develop appropriate
evaluation metrics that are relevant
to the intended use and ensure that
they are applied consistently
throughout the evaluation process?

? What is the quality of the generated
data including aspects such as
diversity, realism, and coherence?

? How do results from the model under
test compare to other models that
were developed for similar
purposes?

? What is the impact of variations in
data quality on model performance?

? Is the model generating content that
is inappropriate or dangerous?

Generative models are a class of statistical models that aim to
capture the underlying patterns or distributions of data in order to
generate new, similar data.

Generative

• Generative models are more
multipurpose than other algorithm
types

• There is often no straightforward
ground truth with which to compare
generations

• System performance is strongly
affected by the interaction of user
and system (e.g. prompts used)

• Generative models are typically
more resource intensive to train and
operate due to their scale

• This area is evolving on the scale of
months. Expect rapid change.

Diffusion models, transformers, autoregressive decoders Page 54

Thinking about
Context
This Section:

+ Discusses use cases of the model, including how it will be used
and what problems it will solve.

+ Outlines considerations about the environment in which the
model will operate, including data sources, data transport,
computing resources, and security. 05

Page 55

The basics What should you know?

What should you ask?

Similar
Terms

Use Case
The use case is a plain language description or story of how the
model will be used and what problem it addresses. The use case
provides key context for evaluating its effectiveness and how it is
relevant to the problem at hand.

The use cases for the system should
be defined in detail and be consistent
with the Concept of Operations
(CONOPS) and Concept of
Employment (CONEMP).

Ideally, the designers and developers
have created use cases. Testers
should review use cases and contribute
to their improvement if needed.

DoD systems are intended to enable
users and units to accomplish their
assigned missions.

Leverage the use cases to understand
operations and capability supported
and how the AI will fulfill operational
needs.

The task outcomes require metrics that
define success.

The metrics manifest from the
interactions between users and units
employing their systems and the
environments in which they operate.

The AI systems and components roles
in these tasks should be clear. The
challenge for testers is to identify the
problem and use case for the AI model
and how the larger metrics of task
success are connected to specific
characteristics of the AI
model performance.

• Is the model a stand alone
application, part of a larger software
system, or a component in a
physical (hardware) system?

• Does AI change the use case of the
system it replaces?

• How does AI affect individual users’
actions?

• How does AI affect units’ actions
(collective action)?

User story, end user, user-centered design Page 56

The basics What should you know?

What should you ask?

Similar
Terms

Environment
Consider the available computing resources, network constraints,
and security environment that should be incorporated into the
testing approach.

Testers need to consider how the
characteristics of the environment drive
test requirements and how those are
connected with the model.

Key items of the environment are:

• Network connections

• Computing resources

• Security

Testing must be able to realistically
portray the data sources the model
requires in fielded operations.

Testing must account for the data
transport infrastructure. Models
operating on ships, aircraft,
submarines, etc. will have varying
throughput and stability and may not
have connections to the internet.

Testing must match the fielded
computing resources (memory,
processor, and power).

Testing must account for the security
constraints in fielded operations (level
of classification, sensitive data,
restricted access).

Classification can also place
requirements on how data is handled
and shared.

? What changes in data sources over
time should be expected?

? How will software updates impact
data sources?

? How will data sources and transport
vary by operating location?

? What data and network connectivity
will exist in classified environments?

Containerization, development vs production, scalability, edge computing,
TinyML, knowledge distillation, airgapping Page 57

Thinking about
Documentation
This Section:

+ Discusses data cards and data characteristics

+ Discusses model cards and model characteristics

+ Outlines version control, automated documentation, test metrics,
and context characteristics 06

Page 58

Version Control

• All documentation should be versioned and curated alongside the model itself and
the associated versioned data to facilitate version comparisons, auditing,
transparency, and roll back decisions.

Automated documentation

• Where feasible, automation tools should be adopted to reduce the workload of
creating and maintaining comprehensive documentation.

Evaluation Metrics and Results

• The documentation should detail the performance of the model in terms of
standard metrics such as accuracy, precision, recall, F1 score, AUC-ROC, etc.
Additionally, the documentation should describe the test set used for evaluation,
its composition, and any biases it may contain.

Operational Characteristics

• The documentation should contain a section that identifies the intended use cases
of the model, its limitations, and potential risks associated with its deployment.
This could also cover any post-deployment considerations such as monitoring,
retraining strategies, and contingency plans for unexpected model behavior.

Documentation
Comprehensive documentation, including the data sources, preprocessing, modeling
techniques, evaluation metrics, is essential to inform tests of the fielded model.

The AI model is:

• compliant with relevant regulations
and standards,

• comprehensively tested for all key
use cases and fielded contexts,

• monitored appropriately for behavior
drift and data drift, and

• transparent and understandable

Surround your documentation with best practices Documentation helps ensure

Page 59

60

Data Characteristics

Repeatability requires solid data documentation.

• Contains thorough documentation of the training and test data. This includes how
the data was collected, its overall composition, any cleaning or preprocessing
steps, and any data privacy considerations. Documenting potential biases in the
training data is also important.

• Identify stakeholders and collaborators across the dataset’s lifecycle

• Collect documentation and other information to populate a Data Card

• Collect Data

• Collect Code in a repository with documentation of code

• Evaluate, assess, and audit the information for completeness, correctness,
transparency and usefulness

• Version control: All documentation should be versioned alongside the model itself
and the associated versioned data to facilitate version comparisons, auditing,
transparency, and roll back decisions.

• Collaboratively review and update content and code

• The data,

• Meta-data,

• Data dictionaries,

• Location of data and code,

• Source information,

• Points of contact,

• A change log,

• A chain of custody record,

• Known limitations and caveats,

• Code that reproduces cleaning,
merging, engineering, preparation,
etc. and

• other relevant information

Specifics to includeWhat should be documented?

Page 60

61

Data Card
The Data Cards Playbook, shown below, is licensed under a Creative Commons

Attribution-Share Alike 4.0 International License

• The image at right shows the first 2
sections of an example of a data
card template from
https://sites.research.google/datacar
dsplaybook/.

• Best practices in documenting data
is an active area of development and
you should expect to see evolution
there.

• More recommendations for the
content and structure of a Data Card
can be found at

https://doi.org/10.1145/3531146.353
3231
https://arxiv.org/abs/2204.01075
https://ai.googleblog.com/2022/11/t
he-data-cards-playbook-toolkit-
for.html

What should you know? Example Data Card

Page 61

https://sites.research.google/datacardsplaybook/
https://sites.research.google/datacardsplaybook/
https://doi.org/10.1145/3531146.3533231
https://doi.org/10.1145/3531146.3533231
https://arxiv.org/abs/2204.01075
https://ai.googleblog.com/2022/11/the-data-cards-playbook-toolkit-for.html
https://ai.googleblog.com/2022/11/the-data-cards-playbook-toolkit-for.html
https://ai.googleblog.com/2022/11/the-data-cards-playbook-toolkit-for.html

62

Model Characteristics

Repeatability requires solid model documentation.

Model documentation is an integral part of AI model test and evaluation. Thorough
documentation is pivotal to promote transparency, enhance reproducibility, facilitate
model understanding, and enable responsible usage. A model’s documentation
should encompass the following:

Model Description

• Provides details of the model’s architecture and function. It includes the problem it
is intended to solve, type (e.g., regression, classification, neural network), its input
and output types, and the techniques used in its training. It should also note
unique characteristics that distinguish it.

Training Process

• Documentation should describe the training methodology, including any
preprocessing steps, the type of learning algorithm(s) employed, model parameter
settings, performance metrics used, and any techniques applied to avoid
overfitting (like regularization, dropout, or data augmentation).

Information about the computing resources used can also be mentioned if applicable.

• Model details

• date, version, type, architecture,
training algorithms, parameters,
fairness constraints, contact
information, citation details,
license info

• Intended use

• Performance metrics

• Training data

• Quantitative analysis

• Ethical considerations and
recommendations

Specifics to includeWhat should be documented?

Page 62

63

Model Card
Below is an example model card from:

https://www.tensorflow.org/responsible_ai/model_card_toolkit/guide

Introduced by researchers at Google, a
model card serves as a concise yet
comprehensive "report card" for a
trained ML model. It is designed to
provide essential information that
allows evaluators, users, and
stakeholders to understand the model's
behavior and make informed decisions
about its deployment. A model card
typically includes the categories of
documentation mentioned on the prior
page. To aid their creation, some
organizations have built model card
tools. Two popular examples are
Huggingface’s Model Card Writing Tool
and Google’s Model Card Toolkit.

What should you know? Model Card Example

Page 63

https://arxiv.org/pdf/1810.03993.pdf
https://huggingface.co/spaces/huggingface/Model_Cards_Writing_Tool
https://github.com/tensorflow/model-card-toolkit

CONCLUSION
+ Testers should consider the operational use case, the

environment, the data, the learning paradigm, and the algorithms
in planning and conducting a rigorous evaluation of the AI
model.

+ Solid documentation and deliberate curation of the data, the
model, and surrounding context is required for repeatability. 07

Page 64

You should know What should testers ask?

The bottom line

• Data is the foundation of the
performance of an AI model
regardless of the algorithm, learning
paradigm, and parameter settings.

• Insight into the lifecycle of AI model
development enables rigorous T&E

• Documentation should cover
everything needed to inform testing
for the fielded model.

? Is our test strategy comprehensive?
? Are the test methods appropriate?
? Was the data split reasonable?
? How does the fielded context impact

the T&E plan?
? Did the documentation sufficiently

support the test planning & conduct

Rigorous and comprehensive T&E for AI models is vital and
demands innovation and adaptation as the field rapidly evolves.

AI Model T&E Framework

Solid T&E strategy development
remains vital

AI models are in a period of very rapid
experimentation and innovation. Self-
education is necessary to maintain
awareness of new test requirements
and approaches.

Page 65

	Test and Evaluation of� Artificial Intelligence Models
	Table of Contents
	T&E Strategies�for AIECs
	This document is part of a framework for the T&E of AI-enabled capabilities
	CDAO’s T&E of AIEC framework is organized into four focus areas
	CDAO is developing a series of products that address critical T&E needs
	What is a Test & Evaluation Strategy?
	Thinking about Performance
	The Performance Iceberg
	Measuring Correctness
	Measuring Interpretability
	Measuring Bias
	Measuring Robustness
	Measuring Resilience
	Measuring Uncertainty
	Measuring Drift
	Measuring Representativeness
	Measuring Latency
	Thinking about Testing Methods
	Test design & test type selection will be informed by both the data and the model.
	Test Types for Comparisons
	Test Types for Adversarial Threats
	Test Types
	Test Design
	Testing paradigms: beyond either/or
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Thinking about Data
	Thinking about Data
	Assuring data quality across its lifecycle
	1 | Select & acquire your data
	2 | Clean your data
	3 | Engineer your data features
	4 | Split your data
	5 | Curate
	* | Verify & validate your data
	Common Data Types
	Common Data Sources
	Thinking about AI Models
	Thinking about AI Models
	AI model performance lifecycle
	1 | Select your AI Model Architecture
	2 | Define your Model Features
	3 | Train and Test your Model
	4 | Evaluate your Model
	5 | Deploy your Model
	6 | Maintain your Model
	Common Learning Paradigms
	Common Algorithm Types
	Classification
	Regression
	Clustering
	Generative
	Thinking about Context
	Use Case
	Environment
	Thinking about Documentation
	Documentation
	Data Characteristics
	Data Card
	Model Characteristics
	Model Card
	CONCLUSION
	AI Model T&E Framework

