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T&E Strategies
for AIECs
This Section: 

+ Specifies the role of the current document within the larger 
framework.

+ Provides an overview of the framework for the test and evaluation of 
AI-enabled capabilities produced by CDAO Assess and Assurance. 00
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This document is part of a framework for the 
T&E of AI-enabled capabilities

The T&E of AIEC Framework provides
best practices and guidance on how to
test and evaluate AIEC.

The framework is organized into four
categories of testing and provides
different types of resources to AIEC
developers and working-level testers.

CDAO Assessment and Assurance is creating a framework to provide guidance on how 
to test and evaluate (T&E) AI-enabled capabilities (AIECs).

The DoD community for the T&E of
AIEC comes from a variety of
backgrounds.

The T&E of AIEC Framework promotes
a shared understanding between AIEC
experts new to T&E and to T&E experts
new to AIEC.

This document discusses the test and
evaluation of AI models, both
standalone and integrated into system-
of-systems, in a Defense context.

It is intended to help AIEC developers
and working-level testers incorporate
operational realism into testing
throughout an AIEC’s lifecycle.

What is the framework? Why is it needed? What is this document?

This document provides:

Guidance and best practices

T&E at the algorithm level

A primer on T&E of AI models

Strategy-level T&E considerations

This document does NOT provide:

Binding policy and requirements

T&E at the system-of-systems level

A comprehensive AI Model T&E guide

Detailed T&E implementation

Page 3



Human Systems Integration (HSI) T&E
Evaluating an AIEC’s ability to help stakeholders 
observe and orient to their environment, make 
informed decisions, and carry out their missions.

CDAO’s T&E of AIEC framework is organized 
into four focus areas
While these T&E focus areas help break critical aspects of T&E into digestible pieces, 
they are neither mutually exclusive nor cleanly delineated in real testing.

Operational T&E (OT&E)
Evaluating an AIEC performing representative 
missions within an operationally realistic 
environment against a realistic adversary.

Systems Integration (SI) T&E
Evaluating an AI component within its larger 
system to ensure that the AIEC functions as a 
holistic unit and identify its limitations and risks. 

AI Model T&E
Evaluating and documenting AI models and data 
across performance dimensions informed by 
system and mission constraints.

This document covers the AI Model T&E focus area
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This 
document  
focuses on 
Part 1

1 | Write and 
assess T&E 
Strategies

Provides a high-level 
overview of critical 
T&E concepts that will 
be influenced by the 
inclusion of AI models 
in the system under 
test.

Supports testers and 
developers as they  
write TESs and assess 
whether the TES is 
committed to the right 
evaluations.

2 | Write and 
assess Detailed 
Test Plans 

Provides guidance for 
implementation of T&E 
concepts introduced in 
Part 1; highlights 
promising paths 
forward for unsolved 
challenges. 

Supports testers and 
developers as they 
develop and 
implement detailed 
test plans that capture 
mission objectives.

3 | Engage with 
other DoD T&E  
stakeholders 

Provides frameworks 
outlining how T&E is 
critical to fielding  
trustworthy AIECs 
across DoD acquisition 
pathways and mission 
applications.

Supports testers and 
developers as they 
advocate for policy 
and investments that 
address DoD T&E 
shortcomings.

4 | Execute tests 
and rigorously 
analyze results 

Provides resources 
such as templates, 
validated 
measurement 
instruments, and 
automated analysis 
tools.

Supports testers and 
developers by 
streamlining and 
automating common 
T&E activities with 
tailorable tools.

CDAO is developing a series of products that 
address critical T&E needs
Part 1 is designed to help testers understand core T&E concepts so that working-level 
testers can write and assess test and evaluation strategies for AI-enabled capabilities
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What is a Test & Evaluation Strategy?
A high-level document in DoD acquisitions 
that guides test planning and execution.

Captures the mission(s) a capability is 
intended to perform and all hardware and 
interfacing systems in the test design.

Describes the test events and activities 
necessary to evaluate the system and support 
acquisition, technical, and program decisions.

Identifies and prioritizes assessment areas to 
inform test team data requirements to support 
major program decisions.

Specifies the resources required to conduct 
T&E and shortfalls in resourcing that will 
require investments.

You can read more about DoD TESs at 
https://www.test-evaluation.osd.mil/T-E-Enterprise-Guidebook/

Learn More
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Thinking about 
Performance
This Section:

+ Describes the multiple dimensions of performance 

+ Outlines how performance varies based on the AI model type

+ Describes common aspects and measures of performance 01
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The Performance Iceberg

Testing an AI model is vital for its quality, reliability, and 
usefulness. But ensuring testing is sufficiently robust is 
not simple, as many subtle aspects of performance 
require evaluation and validation. Correctness, the most 
visible and intuitive metric, shows how well a model 
achieves its functional performance goals. But 
correctness measurement alone is not enough for 
rigorous and robust performance evaluation.

There are many other aspects that are hidden below the 
water line, but they are vital for ensuring the quality and 
reliability of the model. These aspects include how the 
model handles different sources of error, such as bias 
and drift, how the model explains its output and 
reasoning, such as explainability and uncertainty, how 
the model responds to different situations and inputs, 
such as latency and robustness, and how the model 
represents the real-world problem and data, such as 
representativeness and resilience. These aspects are 
often interrelated and complex, and they need to be 
carefully considered and evaluated when testing an AI 
model. Testing an AI model is not a simple task, but a 
comprehensive and effective one.

Correctness is just the tip of the iceberg when it comes to rigorously and robustly 
evaluating the performance of your AI model

Correctness

Bias

Explainability

Robustness

Drift

Uncertainty

Resilience

Representativeness
Latency
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How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Correctness
Correctness is the ability of a predictive model to fulfill its 
functional performance goals. Correctness (accuracy, precision, 
and/or recall) is frequently a main focus of model developers.

Correctness metrics vary by algorithm 
type. When available, correctness 
relates prediction results to ground 
truth. When not available, other 
comparisons are needed. Common 
metrics include:

 Classifiers: Accuracy, Precision, 
Recall, F1 score

 Regression: mean squared error, R2

 Unsupervised and generative 
models: often rely on human 
evaluators

 Reinforcement learning systems: a 
combination of simulator scores and 
human evaluation

For classifier models, “Accuracy” is 
defined:

Correctness on the intended task is 
typically the primary consideration for a 
model developer. Without a sufficient 
level of correctness, none of the other 
measures given here matter.

Correctness is the measure of how well 
a model predicts the correct or 
expected output for a given input. It is a 
basic and intuitive metric for assessing 
the model’s performance on its 
intended task.

Correctness is important for identifying 
and improving the model’s weaknesses 
and limitations. It helps to diagnose the 
sources of errors, such as data quality, 
algorithm design, or others.

Correctness is useful for comparing 
different models or model versions.

? What is the expected output of the 
model for a given input?

? Does the developers’ functional 
performance metric align with what 
matters most in operations?

? Can the model achieve its 
correctness targets?

? How robust is the model under 
different conditions and scenarios?

functional performance, prediction accuracy, goodness of fit Page 9



How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Interpretability
Interpretability methods provide insight into how a model produced 
its output.  These methods generally do not provide insight into the 
underlying data generating process that the model was trained on, 
but greater interpretability facilitates understanding the model’s 
inner workings.

Intrinsic and/or Post-hoc? Intrinsic 
methods restrict the complexity of the 
model, while post-hoc methods analyze 
a trained model.

Local or Global? Does the 
interpretation method explain an 
individual prediction or the entire model 
behavior?

Model-Specific or Model-Agnostic? 
Model specific methods can be faster, 
but model-agnostic methods work with 
more model types.

Textual explanations: This method 
generates natural language 
descriptions that explain the model’s 
output for a given input.

Decision trees: This method converts a 
trained model to show the rules behind 
the model’s predictions.

Detect bias – interpretable models can 
be checked for protected groups or 
their correlates in training data.

Auditable – interpretable models can 
be examined for purposes of debugging 
or suggesting theories for further 
testing.

User acceptance – humans rely on 
explanations to develop trust. 
Interpretable models can provide useful 
explanations.

Education – can help users and 
students learn from the model and 
know when to use the model, or not. 

Adaptation – interpretable models can 
help users and developers adapt the 
model to changing needs, preferences, 
or environments.

? Who needs to interpret the model?

? How will the interpretability 
measures be presented?

? How will the interpretation be used?

? What issues might confound the 
provided explanations?

? How does user feedback get 
incorporated into the model’s 
interpretability?

explainability, SHAP (SHapley Additive exPlanations), mechanistic 
interpretability, transparency, decision boundary

xkcd.com
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How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Bias
“Bias” can mean any of several different concepts when applied to 
AI, including but not limited to: discriminatory or unfair treatment 
(legal/fairness), underrepresented elements in the data 
(representation), and differences in average outputs from the true 
mean (statistical).

There are too many concepts of bias to 
comprehensively list and define here. 
Some types of bias can be measured 
directly if ground truth is available, but 
Others must be inferred. Some cannot 
be simultaneously minimized.

Fairness bias often relates to 
correlations in the data; the chosen 
definition of fairness will inform 
measurement. Representation bias can 
occur when there is selection into the 
training sample, so measurement can 
be facilitated by distributional 
measurements. Ground truth is often 
not available, so statistical bias often 
must be inferred from prediction error.

Teams should involve stakeholders to 
identify and create strategies for 
measurement and mitigation, when 
appropriate.

Models may exhibit good overall 
performance but still have unintended 
bias that may result in harm. Fairness 
bias can result in harm to individuals 
and groups – a violation of the DoD 
Ethical AI Principles. Representation 
bias can diminish operational 
effectiveness and suitability, and lead 
to fairness bias. 

Unintended bias can lead to negative 
consequences, particularly for some 
subpopulation such as minorities, 
specific genders, professional groups, 
or other underrepresented ones. E.g.,

 Model outputs that systematically 
vary across groups

 Disparate treatment
 Social or economic harm
 Loss of trust

? What bias is intentional? 

? How does the intentional bias tie to 
mission objectives and 
performance?

? What undesirable biases might be 
reflected in your data and amplified 
by the model?

? What fairness metrics best align with 
your mission objectives?

Selection bias, representation bias, statistical bias, algorithmic bias, fairness, 
disparate treatment

xkcd.com
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How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Robustness
Robustness describes how well a model performs outside of 
conditions on which it was trained. Robustness is typically 
categorized into two areas: natural (natural variations in input 
data) and adversarial (perturbations caused by malicious attacks).

In evaluating robustness, testers should 
consider both the smoothness of the 
performance surface and the 
performance in specific situations 
relative to other models.

Natural robustness is evaluated 
through variation in evaluation data. 
This can be done by using different 
datasets or data sources that reflect the 
diversity and complexity of the real-
world data. Metrics should capture how 
much the model performance degrades 
under different levels of variation.

Adversarial robustness is evaluated via 
manual or automated red teaming. Red 
teaming simulates attacks by an 
adversary who has some knowledge 
and access to the model. Metrics 
should capture how often the model is 
compromised by adversarial inputs.

AI models can perform unpredictably 
when deployed outside of the 
conditions in which they were trained 
due to emergent model behaviors and 
a failure to generalize in ways that 
conform to human expectations.

A lack of robustness can lead to 
undesirable or harmful consequences 
for users, stakeholders, or society at 
large, such as loss of trust, privacy 
breaches, discrimination, or physical 
harm. 

By measuring robustness, testers can 
identify and mitigate potential risks and 
vulnerabilities of AI models before they 
are deployed in real-world settings.

Measuring robustness can lead to 
design decisions to enhance system 
quality and reliability, as well as better 
user experience.

? How does the model handle errors 
or failures and recover from them?

? What threats or attacks might the 
model face from adversaries?

? How does the model handle red 
team attempts to confuse it?

? How does the model adapt to 
changes over time?

brittleness, adversarial resistance, overfitting, transfer learning Page 12



How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Resilience
Resilience describes how well a model recovers to desired 
performance from a performance-degrading event such as a 
failure. Resilience is reactive, while robustness is proactive.

Testing for lingering effects of stress 
and perturbations may give insights into 
model resilience

Testers should consider the following:

• The frequency and severity of 
disruptions that may be encountered

• The time and resources required for 
the system to recover and resume 
normal operation.

• The impact of disruptions on system 
performance such as accuracy, 
reliability, safety, or user satisfaction.

• The mechanisms employed to cope 
with disruptions such as error 
detection, compensation, or learning.

A resilience curve will plot the system 
performance over time under different 
scenarios of disruptions or failures.

Resilience is a crucial aspect of the 
system’s reliability, usability, and 
trustworthiness.

Measuring resilience can help identify 
and improve the system’s weaknesses.

The distinction between robustness 
and resilience is clearer when dealing 
with dynamic models, such as 
autoregressive models. With a dynamic 
model, future output depends on the 
history of inputs and outputs, so errors 
propagate forward in time. 

A contemporaneous perturbation may 
result in poor performance right now 
(robustness issue) but also continued 
poor performance after the perturbation 
has passed (resilience issue).  

? Is the model dynamic?

? How will testing measure lagged and 
lingering effects?

? Can the model identify mistakes and 
self-correct?

? How does the model handle errors 
or failures and recover from them?

autoregressive, recovery time Page 13



How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Uncertainty
Uncertainty refers to the level of confidence users should have in 
the outputs of a model. There are many sources of uncertainty, 
including natural random variation, a lack of training data, and 
others.

There are many types and sources of 
uncertainty, including aleatoric 
(inherent randomness), epistemic 
(ignorance regarding what we know), 
and approximation (how well the 
chosen model approximates reality).  

Many uncertainty quantification 
methods exist, and the best choice will 
depend on the task, modeling 
framework, and your assumptions 
about the use case.  Common methods 
include subsampling, analytic 
approaches, Monte Carlo simulation, 
and ensembling.  

One should ensure the validity of the 
chosen uncertainty quantification 
method by assessing agreement with 
the true uncertainty.

To improve the performance, reliability, 
and interpretability of the model by 
providing a measure of confidence or 
error for predictions. This helps users 
or stakeholders to trust and use the 
model predictions more appropriately.

To identify sources and types of 
uncertainty affecting the model, such as 
natural variation, lack of training data, 
model complexity, or adversarial 
attacks.

To reveal the regions of high or low 
uncertainty in the input or output space. 
This helps testers or developers 
evaluate the model’s generalization 
ability and reliability and prioritize the 
areas needing more attention or data.

? How certain do we need to be of a 
model’s predictions?

? Will the model be used in a context 
that was rare in the training data?

? How does uncertainty vary across 
subpopulations?

? Is the estimated uncertainty properly 
calibrated?

Epistemic uncertainty, aleatoric uncertainty, confidence intervals, Bayesian 
inference, stochastic processes, Monte Carlo methods, outlier detection

xkcd.com
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How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Drift
Drift is the change of model performance over time due to changes 
in its environment. Drift can apply to the data, the model, or the 
context/concept underlying the model use case. 

Model performance should be tracked 
with updated data, and changes in 
performance should be investigated. 

Assessing data distribution changes 
over time can reveal sources of drift.

To measure data drift, use feature-
based methods to compare the 
statistical properties of the features in 
the training and production data.

To measure model drift, one can use 
output-based methods to compare the 
predictions of the model on the training 
and production data.

To measure concept drift, compare the 
performance of the model on the 
training and production data. Such 
comparisons can capture changes in 
the predictive power, sensitivity, and 
more.

There are various types of drift that 
affect AI models: drift may occur when 
the distribution of inputs or outputs 
change over time or when the 
relationship between inputs and 
outputs changes. Careful modeling can 
account for some kinds of data drift 
during development, but the source of 
drift is often not known or observed. All 
drift symptomatically manifests as 
change in performance (typically 
degradation) over time. 

Monitoring for changes in performance 
and changes in the data can prompt the 
need to retrain the model, collect more 
data, update procedures associated 
with data collection or use of the model, 
or investigate other sources of 
degradations more closely. 

? How can the model monitor or report 
data, concept, and model drift?

? How will updates correct for the 
effects of drift?

? How can the model be updated, 
retrained, or revalidated for drift?

? What is the desired data distribution 
under expected conditions?

Concept drift, context drift, data drift, model drift, model decay, online 
learning, streaming data, non-stationarity, model monitoring Page 15



How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Representativeness
Data used for model training must be sufficiently representative of 
the real operational environment in which the model will be 
deployed. Model performance depends on the training data. 

Training data, testing data, & validation 
data should all be representative of the 
operational environment, and the model 
architecture should be sufficient to 
capture salient operational features.

Test data & validation data should be 
different from training data.

Typical measures will show the degree 
of similarity between the planned 
dataset and the salient features of the 
operational context. Example measures 
may include: data similarity, data 
diversity, data coverage, data currency, 
and data volume.

Similarity and sufficiency must normally 
be defined by subject matter experts in 
the operational context.

To reduce the risks of overfitting, 
underfitting, or bias in the model. 

To evaluate the model performance 
and characterize how it will generalize. 

To identify and improve data quality 
and quantity issues and the 
architecture of the model.

To help ensure that the model meets 
user expectations, needs, and 
preferences in the real operational 
environment. 

Representative training data that aligns 
with “real” operational data in all 
significant aspects is vital to achieving 
desired model behavior. 

Worthwhile testing critically depends on 
the test data being representative of 
real operational data.

? What variables define 
representativeness for the 
operational context?

? Are those variables captured in an 
operationally relevant way?

? What is the fidelity of the data with 
respect to actual operations?

? Does the operational context and 
associated data change over time?

Class imbalance, sampling bias, dataset diversity Page 16



How do you measure it? Why should you measure it?

What should you ask?

Similar
Terms

Measuring Latency
Production AI models must operate at a speed sufficient for their 
users. Latency can depend on model complexity, input data size, 
hardware performance, and other factors.

Latency is measured by timing 
responses of the model. 

Latency must be measured in an way 
representative of the operational 
environment to be meaningful.  

Profiling tools can measure the time 
taken by model components to help 
identify the bottlenecks.

Benchmarking tools measure the 
latency of the model on different 
hardware platforms, such as CPUs, 
GPUs, TPUs, etc. This can help 
compare the trade-offs between speed 
and accuracy, and choose the best 
platform for deployment. 

Load testing tools measure latency 
under different levels of demand or 
request frequency or size.

In many applications like real-time 
analytics or autonomous navigation, 
latency constrains usability. 

Latency also affects the smoothness of 
the user experience even in less time 
sensitive applications.

Running a machine learning model in 
production may incur high costs due to 
the use of cloud computing, storage, or 
bandwidth. Measuring latency can help 
select the most efficient and cost-
effective platform and configuration for 
deployment.

To troubleshoot the model’s behavior in 
real-time. Measuring latency can help 
detect and diagnose problems due to 
drift, system failures, or performance 
degradation and take appropriate 
corrective actions.

? Does the model operate at a speed 
sufficient for its intended operation?

? Is there significant worst-case 
variance in the latency?

? Are there bottlenecks that could be 
addressed to boost inference 
speed?

? How will latency be measured in 
production?

inference speed, latency, network latency, throughput, edge computing, 
response time Page 17



Thinking about 
Testing Methods
This Section:

+ Outlines types of tests unique to AI

+ Presents ideas on test design for AI models

+ Discusses balancing test implementations 02
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Section 1, Thinking about Performance, 
introduced some considerations about 
the performance of an AI model for DoD 
applications and ways to measure its 
performance. With those considerations 
in hand, this section will introduce 
considerations for fleshing out the test 
strategy into an implementable plan.

Test 
Types, 

Designs 
& 

Methods

Test implementations must be balanced 
between the strengths and limitations of 
test methods. 

Testers must account for priorities and 
available resources when selecting from 
the appropriate test types and test design 
approaches. Though some methods 
used in test planning require adaptation 
or invention, many of the techniques in 
testers’ toolboxes will continue to be 
relevant for AI models and systems.

Test design & test type selection will be 
informed by both the data and the model. 
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Test Types for Comparisons

Pairwise testing is a technique where
test cases are generated such that all
possible combinations of any two
variables (or parameters) are covered
at least once. The goal is to
significantly reduce the number of test
cases while still capturing most of the
defects that would have been found
using exhaustive testing. In machine
learning, examples include varying
pairs of hyperparameters* to avoid
exhaustive grid search or testing the
interaction between pairs of features.
Pairwise testing does have limits.

In more complex models, analyzing
every pair of parameters can be
computationally costly, requiring either
statistical sampling or testing pairs at a
higher level of abstraction that
compromises on rigorous definition.

There are various test types for testing model performance. The types shown here differ 
in how the model is compared and how data are used. 

A/B testing is a method where the
response of two variants of the program
(A and B) to the same inputs are
compared to determine which of the
two variants is better. It is a statistical
testing approach which typically
requires the comparison of test results
from several test to determine the
difference between the programs.

A/B testing is common when comparing
a new variant of a model in production.
As an example, 50% of a website’s
users might see content recommended
by the current production model, while
the other half see recommendations
from a new variant. If tests of the new
model show improvement, the model is
swapped in, otherwise the system
keeps its current state.

Back-to-back testing, also known as
differential testing, is related to A/B
testing, but rather than comparing two
variants of the same model, the model
under test is compared with a different
model.

The goal of back-to-back testing is
usually to identify defects by
contrasting performance of the two
models. The second model could be in
an existing system that is being
considered for replacement or it could
be a model that is used solely for
testing because it lacks properties
necessary for production use, e.g. it
runs too slowly.

Page 20
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Top-level parameters whose values control the learning process. E.g., train-test 
split, learning rate, activation function, or hidden layers. 

Hyperparameters



Test Types for Adversarial Threats

Adversarial testing is a technique that
uses adversarial methods to identify
and address the vulnerabilities of a
model, making it more resilient and
trustworthy.

One type of adversarial method is
adversarial attack, where an attacker
subtly perturbs valid inputs that are
passed to the trained model to cause it
to provide incorrect predictions. For
example, to defeat spam filtering a red
team might slightly change an email’s
wording to avoid classification as spam
while remaining readable to the
intended audience. Another type of
adversarial method is data poisoning,
where an attacker manipulates the
training data to cause the model to
behave incorrectly.

AI models may or may not be secure against malicious attacks that aim to manipulate 
their inputs, outputs, or behaviors.

A red team is a group of testers that
uses adversarial methods to probe a
model and explore its attack surface,
which can be large and unwieldy for
some models. Red teaming can reveal
unexpected model behavior, coverage
gaps in the data, gaps in procedure,
security vulnerabilities, other points of
stress in the model, and evaluate the
effectiveness of current defenses. It is
appropriate during all stages of the
lifecycle, including deployment.

Red teaming is most often used to
emulate potential adversarial attacks
and is associated with cyber testing,
testing the code, and testing the
statistical soundness of the model, but
other aspects of the model can be red
teamed as well. For example, data
curation policies, monitoring and
feedback loops, auditing mechanisms,
and guardrails for proper use can all be
red teamed.

A red team can be internal or external
professionals, or crowd-sourced
testers, depending on availability,
expertise, and budget. Crowd-sourcing
can provide a larger and more diverse
pool of testers, but it may also pose
challenges in quality, security, and
ethics.

Red teaming can be costly for complex
and large models, but some ways to
reduce cost and increase efficiency are
red teaming events, such as DEF CON,
where experts can congregate and
contribute, network, learn, and give
feedback.

Policies and procedures are needed to
ensure safe and effective red teaming,
grade efforts and results, and capture
feedback.

Page 21
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Test Types

Experience-based testing refers to the
practice of leveraging the skills,
knowledge, intuition, and expertise of
testers to identify potential issues in a
software system. Error guessing is
typically based on testers subject
matter knowledge, typical developer
errors, and failures in similar systems.
An example could be the use of
knowledge about how ML systems
have failed in the past from a database
like the AI Incident Database.
Experience-based testing is limited for
scalability and is inherently subjective.
This method might miss issues that
could be captured through more
systematic testing approaches.

In cases where the expected outcomes of a model are less well understood, these test 
types may contribute to the overall characterization of the model.  

Metamorphic testing is a software testing technique that's especially useful when you
have a system where it's hard to know the "correct" output for a given input, which is
often the case with machine learning models. Unlike traditional testing methods,
which compare the output to a known "correct" answer, metamorphic testing focuses
on the relationships between inputs and outputs.

The first step is to identify properties or rules that the output should satisfy when the
input is changed in specific ways. These are called metamorphic relations (MR).
Next, for a given input the model's output is observed. Then, the input is transformed
according to the established MRs, and the model is re-run. The outputs are then
checked to see if they maintain the metamorphic relations. For example:

• For speech-to-text, slight changes in playback speed should not change the
output.

• For clustering, adding a point at the centroid of each identified cluster should not
change the number of clusters or any existing point's assignment, and should
assign each new point to the cluster that generated it.

Experience-Based Testing Metamorphic Testing 
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Test Design

Traditional test design allocates design
points in a way that captures maximum
variation in the data for testing. This
often assumes a smooth response
surface, not present in many AI
systems.

AI systems may exhibit non-smooth
responses, especially near edge cases
and low density areas of the training
space. Testers should ensure that
those areas are not omitted from
testing and may wish to prioritize those
areas for testing in some situations.
Model testing should emphasize
regions of low density coverage in the
training data.

Test design focuses on selecting specific data points for analysis, enabling you to draw 
conclusions or make inferences about a larger population or phenomena.

Common factor selection methods
• SMEs provide valuable insights from

a domain-specific perspective.

• Automated screening applies
automated tools to identify potential
issues with the model such as
overfitting, underfitting, and data
leakage and helps ensure
comprehensiveness and rigor.

Common test design methods
• Cross-validation: evaluate

performance across k smaller sets
(or folds) of the data, then average
the results

• Holdout validation: separate the
data into training, test, and validation
sets

• Bootstrapping: generate multiple
training datasets by resampling the
data with replacement. Train on the
multiple training datasets, then
evaluate on the original dataset

The process of identifying the 
factors that are most important to 
the model’s performance and 
ensuring they are included in the 
test design and test data

Factor Selection 
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Testing paradigms: beyond either/or

Many testing paradigms are often
framed as extremes or an either/or
– often pitting automated testing
solutions against processes with
ongoing human input.

Synthesize across testing paradigms to strike the right balance.

Reality is typically far more gray,
and well balanced solutions will
likely leverage a combination of test
implementations.

Testing professionals should
educate themselves on the
strengths and limitations of different
testing paradigms and choose the
best fit for their context and goals.
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Balancing Test Implementations

Continuous
Testing

Discrete
Test Events

Tests occur at regular intervals or at model updates 
or other triggering events

Follows pace of development, changes in model 
over time are observed

Can add complexity to scheduling and resourcing, 
often less extensive due to computational 
constraints

Tests occur at specified points in time

Often easier to schedule and resource, can be 
larger in scope because computational resources 
are prioritized for testing

Can be out of sync with developer pace
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Balancing Test Implementations

Automatic
Testing

Manual
Testing

Tests specified in code and run at set intervals or 
every model update 

Cheap to run once tests are developed, fast, good 
for catching regressions, thorough, and good for 
testing predefined logic cases

Adds to code maintenance burden, difficult to 
automate complex evaluations

Tests conducted by an expert 

Handles complex tests difficult to specify in code

Expensive in long run, slow, can be less thorough
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Balancing Test Implementations

Black Box
Testing

White Box
Testing

Tests that focus on feeding inputs to the model and 
evaluating its outputs

Requires less privileged access, not dependent on 
model architecture

Can be computationally expensive, difficult to 
interpret results

Tests that require knowledge of the internal 
structure of a model, such as its parameter weights 
and training data

Can be more interpretable, some adversarial 
techniques require internal access

Can be difficult to negotiate access to sensitive 
intellectual property, some techniques limited to 
particular model architectures
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Balancing Test Implementations

Live Test
Events

Model & 
Simulation

Tests occur in environment as close to operational 
one as possible

More operationally realistic

Expensive, infrequent, modification harder

Tests occur in silico (i.e., experimentation 
performed by computer) using data from model or 
simulator. 

Highly scalable, can be quickly modified

Might have significant differences from deployed 
environment
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Thinking about 
Data
This Section:

+ Describes data as the foundation of AI models

+ Explains how data affects model performance and testing

+ Provides key considerations tied to the data lifecycle

+ Provides details on common data sources and data types 03
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Thinking about Data

Machine learning turns the programming paradigm on its
head. Traditional programming specifies some desired
process a system should follow or an output it should
produce. With AI models, however, the system learns from
examples rather than explicit instructions.

Data influences model performance and can introduce testing challenges

Data is the foundation upon which AI models are built, and
any shortcomings can result in poor model performance. This
paradigm shift introduces new and increased risks compared
to traditional software that should be captured via testing.

The rest of the ‘Thinking about Data’ section covers:

Traditional Paradigm

Input data

Program
System Output data

Learning Paradigm

Input data

Output data
System Program

The Data Lifecycle

Select, clean, engineer, split, curate, and 
verify & validate

Common Data Types

Audio, image, text, video, tabular

Common Data Sources

Commercial, laboratory, manually collected, 
model output, open source, synthetic

NIST’s AI Risk Management Framework and CDAO’s National AI Infrastructure T&E Capability 
(NAITIC) Gap study discuss additional differences between software and AI models. 

Learn More
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Assuring data quality across its lifecycle
Testers must ensure that data are complete, diverse, and realistic, and that the data 
lifecycle steps are documented, validated, and reproducible.

Verify & Validate

Ensure the integrity, accuracy, and quality of the data

1 | Select
Identify, locate, and 

acquire needed sources of 
data

3 | Engineer 
Structure data, engineer 

features, and label as 
appropriate

5 | Curate
Version and store data, 

code, and other 
information

2 | Clean
Identify and mitigate 

errors, missingness, and 
poor quality

4 | Split
Split the data appropriately 

into subsamples for training, 
testing, and validation 

This process is far from linear! It’s inherently iterative!

Important!
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How is it relevant to testing? What are best practices? What should testers ask?

1 | Select & acquire your data

You need a lot of data – Data are often 
noisy. Testing requires sufficient 
coverage of the operational space; 
identification of edge cases and 
exploration of the operational space for 
unexpected behavior may also require 
large amounts of data.  Response 
surfaces of AI models may not be 
smooth, so traditional experimental 
designs, including DOE, may provide 
insufficient coverage of all possible 
values the data could take to capture 
points of failure. 

Testing real world performance and 
reliability of the model critically 
depends on the operational realism of 
testing data. 

Bringing operationally realistic data 
forward in the development and testing 
process can be costly, but failing 
testing and retraining can be costly, as 
well.  Synthetic or simulated data can 
help manage this trade-off, but one 
must carefully consider the fidelity with 
which the data is generated.  

? What rights does the government 
have with respect to the data?

? What are the data sources?  Is 
sourcing legal and ethical?

? How can you ensure that the data 
are complete and operationally 
realistic? 

? Think about how the data are 
generated.  Is there relevant 
information that is not observable?  
Does the data contain known bias?  

Data must be related to the use case, be 
operationally realistic, and have variation.
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How is it relevant to testing? What are best practices? What should testers ask?

2 | Clean your data

Iterate V&V with data cleaning.

Normalize data tables as needed for 
curation.

Document actions.  Decisions made 
when cleaning data often have 
advantages and drawbacks.  
Documentation promotes transparency 
and facilitates auditing. 

Do By Code!  Use code to clean the 
data and maintain a repository of code 
that reproduces all cleaning steps to aid 
transparency and reproducibility. Avoid 
manually cleaning data in 
spreadsheets!

Data are rarely ready to be used out of 
the box.  Training data must be 
cleaned, and the cleaning steps must 
be validated.  Test data should be 
appropriately cleaned and validated as 
well. These are actions that testers 
should confirm.

In response to model or data errors 
discovered in testing or V&V, additional 
iterations in data cleaning may be 
required.

Subsequent needs for new data will 
also drive additional data cleaning.

? What does missingness mean to the 
applicability of the data?

? What are the valid values, have 
definitions or ontologies changed 
over time?

? Where is the data incomplete?

? What might affect the operational 
realism of the data?

? Is there evidence of data poisoning?

? Are the cleaning processes 
sufficient?

Identify and correct or mitigate entry errors; 
incorrect or corrupted information; incorrectly 
formatted entries; duplicate, incomplete or 
missing data; and other quality issues.
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How is it relevant to testing? What are best practices? What should testers ask?

3 | Engineer your data features

Do by code!  Using code to engineer 
your data and maintaining a repository 
of code that reproduces all decisions 
aides in review, auditing, and 
reproducibility.

Decisions made when engineering 
features often have advantages and 
drawbacks. Documenting your 
decisions promotes transparency and 
facilitates auditing.

Raw data sets need to be combined 
into a single data set and transformed 
into a format that makes sense for use 
in machine learning.  The 
transformation steps and resulting data 
should be V&V’d.    

Inputs and targets (outputs or reward 
signals), including labeling, must be 
specified.  Labeling is often cited as 
being a critical, but costly and labor-
intensive part of this process.  

? Are the engineering steps 
appropriate?

? What are the relevant features for 
the problem at hand?

? Is the engineered data appropriately 
operationally representative?

? Were the data feature engineering 
steps verified and validated? And 
documented?

Feature Engineering transforms raw or cleaned 
data elements into a format that is useable by 
the algorithm.
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How is it relevant to testing? What are best practices? What should testers ask?

4 | Split your data

Do By Code!  Maintaining a repository 
of code that reproduces all preparation 
decisions aides in review, auditing, and 
reproducing results.

Re-Validate! Generally, all sample 
splits should be representative. Re-
validate your subsamples for 
operational realism and 
representativeness after splitting.

Similar to how a teacher evaluates 
student learning, providing the answers 
to a test before taking it does not 
produce a trustworthy evaluation.  
Models should be tested against 
operationally representative data that 
they did not see during training.

Ensuring reproducibility: By splitting the 
data into training, validation, and testing 
sets, we can ensure that our results are 
reproducible. Note: terminology differs 
across fields, a validation split is used 
for hyperparameter optimization – not 
validation of the data!

? Are the data cross-sectional, time-
series, or panel?

? What variables define 
representativeness?

? How to choose the temporal split 
points?  Does the distribution 
change over time?

? How to choose subsample sizes and 
the number of subsamples? (Should 
test set be 10% or 30%, single 
train/test split, k-fold cross validation, 
etc.)

? Could testing data have leaked into 
the training set?

Splitting data refers to partitioning a data set 
into various subsamples. Recall that AI learns 
from the data in its training sample. To 
properly evaluate an AI model, it must be 
tested on data that it has not learned from. 
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How is it relevant to testing? What are best practices? What should testers ask?

5 | Curate

Proper version control is not just for 
code and models!  It can be used for 
data and meta data, too.

Take care in managing data fidelity; 
balance the cost of curating 
operationally realistic data with that of 
synthetic data and ensure model 
performance remains satisfactory.

Evaluate, assess, and audit all curated 
information for completeness, 
correctness, transparency and 
usefulness on a deliberate schedule.

Curation of the data should be 
adequate to facilitate testing, secure 
enough to guard against adversarial 
attack and spills and corruption, and 
robust enough to facilitate versioning 
and rollback.

Proper curation facilitates transparency, 
auditing, and testing.

? Who are the stakeholders and 
collaborators across the dataset’s 
lifecycle

? Are the data and V&V and other 
auditing results adequately 
documented in a Data Card?

? Where and how are the data stored 
and accessed?  How is cleaning and 
engineering code stored?

Data Curation refers to deliberate, active 
management of the data over time alongside 
metadata, documentation, cleaning and 
engineering code, and V&V and auditing 
results.
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How is it relevant to testing? What are best practices? What should testers ask?

* | Verify & validate your data

Validation of the data should be on 
going rather than just at some fixed 
point in the lifecycle.  

Data properties, contents, and 
ontologies should be reviewed in light 
of changing operational environments 
and user feedback. 

Engage and iterate with data providers, 
subject matter experts, domain experts, 
developers, and end users.

The data should be sufficiently 
representative of the real operation for 
which the model will be deployed, and 
the processes supporting and defining 
the data lifecycle should be sufficient to 
support the use case and capture the 
salient information regarding 
operational outcomes.

Each of the previous slides in this 
section implicitly describes specific 
V&V activities relevant to that part of 
the lifecycle.

? How are low density regions in the 
data treated (e.g. edge cases)?

? How will the data will be stored, 
accessed, and used?  

? How are the data generated - is 
there any nuance that might affect its 
use or impede its ability to 
sufficiently capture salient 
information? 

? What might be missing, and what 
assumptions were made in cleaning 
and engineering?

Verification and Validation ensures the 
integrity, accuracy, and quality of the data.  
The data should be secure, operationally 
representative, and of sufficient quality and 
quantity to enable machine learning.

A “validation data set” is not the same as the validation of the data (see p 35.) 

Important!
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Common Data Types

The range of data modalities can shape
testing priorities. Some types that are
good use cases for AI applications in
DoD are uncommon in industry.

The novelty of some DoD data types
may drive the need for new evaluation
methods, to assure data quality and
representativeness.

This diversity of DoD environments,
data modalities, and mission purposes
require a nuanced understanding of the
mission objectives and challenges to
inform the handling of datasets.

Common data types include audio, image, tabular, text, and video. Data types more 
unique to DoD uses include LIDAR, RADAR, SONAR, electromagnetic spectrum data.

Recent progress and innovations in AI
model applications have been borne
from advances in managing datasets.
For example, normalization and
regularization have accelerated
progress in generative transformers for
images and video.

Normalization scales the input features
to a similar range, which helps the
model converge faster.

Regularization adds a penalty term to
the loss function to prevent overfitting.

• What preprocessing techniques
have been conducted on the varying
data types?
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Common Data Sources

The nuances of data evaluation and its
required rigor will depend on a variety
of factors. The origin of the data can
influence testing priorities.

Many data sources can introduce
opacity regarding data chain of custody
and curation processes, posing a
potential security risk. These risks give
rise to additional testing requirements.

A lack of historical knowledge about the
data’s provenance could introduce
uncertainty about the amount of testing
required.

This includes commercially curated datasets, open source data, lab environment data, 
manually collected data, real environment data, synthetic data, and other types of data.

• Create and maintain an inventory of
data sources and documentation.

• Ensure that data-related legal
agreements and informed consent
procedures document data access
and re-use rights.

• How is representativeness validated
for data sources?

• Has the data from a source
undergone rigorous quality control
and is it reliable?

• What is the chain of custody from a
data source and how it is verified?

• Does the test team have adequate
historical knowledge of the data’s
provenance and processing?

Page 39

How is it relevant to testing? What are best practices? What should testers ask?



Thinking about AI 
Models
This Section:

+ Describes the AI model lifecycle and its steps

+ Describes common machine learning paradigms

+ Describes common machine learning algorithms 04
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Thinking about AI Models

Testers should consider the problem type and complexity, the
solution objectives and constraints, and the trade-offs and
challenges of machine learning when planning a model
evaluation. Different problems require different metrics and
methods to measure the model performance and accuracy.
The evaluation should align with the solution goals and
requirements and account for the solution constraints and
limitations. The evaluation should also consider the potential
issues and difficulties of machine learning, such as bias,
overfitting, or interpretability. The most important aspect
depends on the problem and context, but the evaluation
should be valid, reliable, and meaningful.

Testers must ensure that the model is appropriate, accurate, reliable, secure, and 
compliant with the problem domain and the solution objectives.

The rest of the ‘Thinking about AI Models’ section covers:

The AI Model Lifecycle

Model type selection, feature selection, train 
& test, evaluate, deploy, monitor & 
maintenance

Common Algorithm Types

Neural nets, linear regression, decision tree, 
support vector machine, k-nearest neighbor

Common Learning Paradigms

Supervised, unsupervised, reinforcement
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AI model performance lifecycle
Testers must ensure that the model is appropriate for the given problem and well 
curated and documented across its lifecycle. The lifecycle is outlined below.

4 | Evaluate
Ensure the performance 

of the model against 
solution objectives

3 | Train & Test 
Assign parameters & 
iteratively train & test

1 | Select
Pick an architecture that 

aligns to the problem

2 | Define 
Specify features, metrics, 

and interpretation methods

5 | Deploy
Deploy model to 

production with suitable 
methods and tools.

6 | Maintain
Monitor and maintain 
model performance

This process is far from linear! It’s inherently iterative!

Important!
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How is it relevant to testing? What are best practices? What should testers ask?

1 | Select your AI Model Architecture

The most complicated architecture is 
not always necessary. Begin iteratively 
with something basic and then add 
complexity if accuracy targets are not 
met. 

Simpler architectures may offer higher 
explainability but may have less 
predictive capability. 

In some cases, AI may not be 
necessary at all. Try to identify if 
improved data collection or a 
deterministic algorithm would be 
sufficient.

The choice of model architecture will 
set constraints on the performance 
criteria mentioned before. This is 
typically via architecture genre and 
complexity.

Different architectures or algorithms 
have different assumptions, limitations, 
and performance criteria that need to 
be tested and evaluated.

Testers should understand how 
interpretability changes as complexity 
increases. The right balance between 
complexity and interpretability hinges 
on  traits of the specific use case.

? Is the complexity of the model 
architecture appropriate for the 
accuracy, interpretability, and 
latency requirements?

? Does the model architecture follow 
from successful employment in 
similar purposes and/or use cases? 
If not, why wasn’t another 
architecture selected?

? Does the model architecture fit within 
the operational constraints of the 
hardware that the model will be run 
on once deployed?

A model architecture will set limits on model 
performance and complexity. The optimal 
model architecture will depend on the task and 
resource requirements.
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How is it relevant to testing? What are best practices? What should testers ask?

2 | Define your Model Features

Define features in code! Using code to 
engineer your features and maintaining 
a repository of code that reproduces all 
decisions aides in review, auditing, and 
reproducibility.

Don’t assume features stay relevant or 
useless forever. Reevaluate their utility 
periodically. 

This stage defines the data features 
that will be used by the model, the 
performance metrics that will measure 
the model accuracy and reliability, and 
the interpretation methods that will 
provide insight into the model logic and 
decisions. The data features, 
performance metrics, and interpretation 
methods should be suitable for the 
model type and the problem domain, 
and they should be tested and 
validated for their quality and suitability.

? Are the selected features relevant to 
predicting the model’s output?

? Have the developers checked that 
features used do not serve as 
proxies for protected classes?

? Are the features observable in 
available datasets?

? Are the features meaningful to 
humans?

? Are the features static or could they 
be changed by an adversary?

Features are transformed raw data used by the 
model in training. Sometimes features are 
engineered, and in other cases they are 
learned by the model itself.  Relevant features 
must be selected either prior to or during 
model training.
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How is it relevant to testing? What are best practices? What should testers ask?

3 | Train and Test your Model

Document hyperparameters in a 
manner sufficient to reproduce the 
training run. 

Utilize experiment tracking tools to 
reduce manual documentation 
overhead.

During training, the model’s parameters 
are iteratively updated by minimizing a 
loss function with training data. 

Testing is measuring how well the 
model performs on data that it has not 
seen before. The model  training and 
testing processes should include 
checks for model correctness and 
latency.

? What are meaningful metrics of 
performance?

? Does testing align with the 
operational space

? How much testing is adequate?

? Are training hyperparameters such 
as random seeds and learning rates 
documented?

? How does performance differ among 
subgroups in the test set?

? How should test results be 
monitored for drift?

Training involves iteratively updating a model’s 
parameters by minimizing a loss function with 
training data. Once a model is trained, its 
performance is estimated by testing on data 
split out for that purpose.
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How is it relevant to testing? What are best practices? What should testers ask?

4 | Evaluate your Model

Use cross-validation techniques to 
estimate how well the model will 
generalize to new data.

Use appropriate performance metrics 
that are meaningful in the use case.

Check for bias and ensure that the 
model is fair and unbiased.

Ensure that the model is interpretable 
and can be explained to stakeholders.

This stage involves checking and 
confirming the model’s alignment with 
the solution objectives and 
requirements. The model is evaluated 
on different types of data that was held 
back from training data—the validation 
dataset. The model trade-offs and 
challenges, such as overfitting, 
underfitting, or interpretability is also 
assessed and addressed in this stage. 
The model’s security and compliance 
issues are also ensured in this stage.

? Is the model architecture and 
algorithm appropriate for the 
problem domain?

? Were the hyperparameters 
optimized for performance?

? Was model trained on a separate 
subset of the data and evaluated on 
a different subset?

? How well will the model generalize to 
new data when cross-validation 
techniques are used?

Check and confirm model’s alignment with 
solution objectives and requirements. 
Iteratively evaluate model on representative 
data types. Monitor and address model trade-
offs, challenges, security, and compliance.
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How is it relevant to testing? What are best practices? What should testers ask?

5 | Deploy your Model

Monitor model performance in the 
deployed environment.  While, on going 
model testing is not necessarily 
standard DOD practice, performance 
and other metrics of a deployed model 
are likely to change over time. 

Use gradually scaling rollouts to identify 
issues with a subset of users before 
risking widespread failure. 

In this stage, the model is deployed 
using appropriate methods and tools, 
such as cloud services or edge 
devices. The model performance and 
functionality are monitored and 
maintained throughout its life, so 
deployment should include setting up 
the methods and tools for monitoring 
performance. 

The model deployment process should 
be tested and ensured for its scalability, 
adaptability, availability, and fault 
tolerance.

? Does the deployed model’s 
performance match what was 
expected from earlier testing?

? How can graduated fielding and/or 
beta users be utilized to reduce risk 
and test burden?

Once the model is ready, it is exposed to users 
in production. However, development and 
testing of a model is never finished. Updates 
and testing continue for the life of the 
deployment. 
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How is it relevant to testing? What are best practices? What should testers ask?

6 | Maintain your Model

Monitor model performance in the 
deployed environment.

Automate tests and monitoring as 
possible to reduce manual overhead. 

Model and/or system instrumentation 
and data collection automation is vital 
for model evaluation and maintenance. 
Often one of the hardest things is 
recording the data in the field.

The T&E strategy should identify what 
instrumentation is needed, who 
provides it, and the organizational roles 
and responsibilities for verifying, 
validating, and accrediting it.

The model needs to be constantly 
updated and tested throughout the 
deployment period. Updating the model 
means retraining it with new or revised 
data, or changing its structure or 
parameters. Testing the model means 
measuring its performance on the new 
data or situation. The updating and 
testing process is iterative and never-
ending, as the model has to adapt to 
the changing needs and feedback of 
the users. The updating and testing 
process should also be evaluated and 
enhanced for its speed, stability, and 
adaptability.

? How does the model fit into the 
broader curation approach for the 
project?

? Is the monitoring approach sufficient 
to detect drift before it causes 
mission failures?

? How much and what instrumentation 
is needed for the test strategy.

? Will the planned instrumentation 
yield the needed model metrics?

Monitor and update model in production. 
Retrain or modify model with new or updated 
data. Test model on updated data or 
environment. Repeat update cycle as needed.
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Common Learning Paradigms

These models find a function that maps
input data to output data (i.e., labels),
by iteratively adjusting a set of
parameters and calculating the
difference between the model’s
answers and the correct answers. This
is called the training process.
Supervised models are commonly
evaluated on their predictions using
test data that was held back during
training. The paradigm is used in
Classification and regression.

The nuances of AI model evaluation will depend on a variety of factors, including the 
model’s learning paradigm. Some systems use combinations of multiple paradigms.

These models identify underlying
patterns or structures within the data
without mapping to known ground truth.
Evaluation of unsupervised learning
models can be challenging because
their assessment often relies on expert
judgement of the modeled
output. Unsupervised models are used
to characterize the unconditional
distribution of the data, often by
grouping observations based on
similarity as with clustering and
association problems.

These models learn how to take
courses of action in an environment
from trial and error based on rewards
for being correct and penalties for being
incorrect. To test reinforcement
learning models, it may be necessary to
use a dynamic test environment that
allows testers to assess how the model
interacts with and adapts to its
surroundings. The approach trains an
algorithm through interactions with the
environment and a sequence of
rewards for optimal behavior.

Supervised Learning Unsupervised Learning Reinforcement Learning

Page 49



Common Algorithm Types

Many machine learning algorithms are
useful for more than one type of
analytical task. For instance, support
vector machines are commonly used
for either regression or classification
tasks.

While there are many variations of each
of these approaches (classification,
regression, clustering, and generative),
this section will outline a basic
introduction to the concepts and
provide some key consideration for
testers.

Reflecting differing communities, some
overlap exists in calling these
algorithms versus analytical
approaches or statistical methods.

The next section introduces some of the common types of algorithms used in machine 
learning development.
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You should know What should testers ask?

Examples in DoD systems

Common 
Algorithms

• Automatic target recognition systems 
such as DARPA’s Target 
Recognition and Adaption in 
Contested Environments (TRACE)

• Predictive maintenance on 
helicopter engines in the 160th 
Special Operations Aviation 
Regiment (SOAR)

? What is the purpose of the model?

? How should the model be evaluated 
and what are the evaluation metrics?

? What are the characteristics of the 
training and test data in terms of its 
diversity, realism, and coherence.

? Are the features of the test data well 
aligned to that of the training data? 
Are the training and test data 
representative of the expected 
context of the model?

? What are the limitations of the 
model?

? What is the expected behavior of the 
model in operating contexts outside 
of the design context? 

Classification models are a type of supervised learning model used 
to predict the category or class of new, unseen data based on the 
model learning from a labeled dataset. 

Classification

• Evaluation metrics include accuracy, 
precision, recall, F1 score, and more

• Hyperparameters are set before 
training begins and can have a 
significant impact on the 
performance of the model 

• Overfitting is a common problem in 
classification models. Overfitting can 
be mitigated with techniques like 
regularization, early stopping, data 
augmentation, dropout, and 
ensemble methods

Logistic regression, neural networks, K-nearest neighbors, decision trees, 
support vector machines Page 51



You should know What should testers ask?

Examples in DoD systems

Common 
Algorithms

Regression has been applied many 
times over many decades. A few 
examples are:

• Estimating years of service 
remaining for a service member

• Predicting cost of a project

• Estimating yield for explosives

• Predicting component time to failure

? What is the purpose of the model?

? Are both average and maximum 
errors acceptable?

? If the regression method assumes 
certain properties of the data or 
residuals, are those assumptions 
valid?

Regression models involve input and output of continuous values 
and vary from simple linear regression to many more complex 
types. 

Regression

• Regression as an algorithm or a kind 
of analysis is not the same as 
“regression testing”

• Regression problems can be turned 
into classification problems by 
binning

• Normally, regression is used in 
applications in which a continuous 
value must be predicted from 
another continuous value or multiple 
values. An example could be 
predicting the numbers of hours 
before a component fails from the 
measured viscosity and temperature 
of the component’s lubricant.

Linear, multivariate, polynomial, LASSO, ridge, and Poisson regression Page 52



You should know What should testers ask?

Examples in DoD systems

Common 
Algorithms

• Identify operational cells from 
location tracking data

• Categorizing types of users on a 
network based on activity logs

• Social network analysis to identify 
threats to current events

? What is the purpose of the model?

? Do clusters align with what ground 
truth is known?

? What is the purpose of the model?

? How should the model be evaluated 
and what are the evaluation metrics?

? What are the characteristics of the 
data to be clustered and what are 
the defining characteristics of the 
desired clusters?

? What are the limitations of the model 
and how should it perform when 
operating on data that are approach 
the boundaries of the operational 
use case?

Clustering models are a type of unsupervised learning model used 
to group similar points or “clusters” based on their features. 

Clustering

Page 53

Clustering algorithm output can be 
highly influenced by initialization 
conditions and user-selected 
parameters. 

The definition of similarity is typically 
developed by subject matter experts 
that are knowledgeable in the expected 
use case for the model.

Some evaluation metrics for clustering 
models include silhouette score, 
Davies-Bouldin index, Calinski-
Harabasz index, homogeneity score, 
completeness score, and V-measure.

The best partition and optimal cluster 
number is typically determined in the 
context of the use case. 

K-means, hierarchical, DBSCAN, Mean-shift, spectral clustering



You should know What should testers ask?

Examples in DoD systems

Common 
Algorithms

• Task Force Lima has been formed to 
assess, synchronize, and employ 
generative AI across the DoD

• Large language models are being 
explored in many areas to better 
understand appropriate use cases

• Research at DARPA aims to extend 
generative capabilities using cross-
modal (text, image, video) data

? What is the purpose of the model?

? How will we develop appropriate 
evaluation metrics that are relevant 
to the intended use and ensure that 
they are applied consistently 
throughout the evaluation process?

? What is the quality of the generated 
data including aspects such as 
diversity, realism, and coherence?

? How do results from the model under 
test compare to other models that 
were developed for similar 
purposes?

? What is the impact of variations in 
data quality on model performance?

? Is the model generating content that 
is inappropriate or dangerous?

Generative models are a class of statistical models that aim to 
capture the underlying patterns or distributions of data in order to 
generate new, similar data. 

Generative

• Generative models are more 
multipurpose than other algorithm 
types

• There is often no straightforward 
ground truth with which to compare 
generations

• System performance is strongly 
affected by the interaction of user 
and system (e.g. prompts used)

• Generative models are typically 
more resource intensive to train and 
operate due to their scale

• This area is evolving on the scale of 
months. Expect rapid change.

Diffusion models, transformers, autoregressive decoders Page 54



Thinking about 
Context
This Section:

+ Discusses use cases of the model, including how it will be used 
and what problems it will solve.

+ Outlines considerations about the environment in which the 
model will operate, including data sources, data transport, 
computing resources, and security. 05
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The basics What should you know?

What should you ask?

Similar
Terms

Use Case
The use case is a plain language description or story of how the 
model will be used and what problem it addresses. The use case 
provides key context for evaluating its effectiveness and how it is 
relevant to the problem at hand.

The use cases for the system should
be defined in detail and be consistent
with the Concept of Operations
(CONOPS) and Concept of
Employment (CONEMP).

Ideally, the designers and developers
have created use cases. Testers
should review use cases and contribute
to their improvement if needed.

DoD systems are intended to enable
users and units to accomplish their
assigned missions.

Leverage the use cases to understand 
operations and capability supported 
and how the AI will fulfill operational 
needs.

The task outcomes require metrics that 
define success. 

The metrics manifest from the 
interactions between users and units 
employing their systems and the 
environments in which they operate.

The AI systems and components roles 
in these tasks should be clear. The 
challenge for testers is to identify the 
problem and use case for the AI model 
and how the larger metrics of task 
success are connected to specific 
characteristics of the AI 
model performance.

• Is the model a stand alone
application, part of a larger software
system, or a component in a
physical (hardware) system?

• Does AI change the use case of the
system it replaces?

• How does AI affect individual users’
actions?

• How does AI affect units’ actions
(collective action)?

User story, end user, user-centered design Page 56



The basics What should you know?

What should you ask?

Similar
Terms

Environment
Consider the available computing resources, network constraints, 
and security environment that should be incorporated into the 
testing approach.

Testers need to consider how the  
characteristics of the environment drive 
test requirements and how those are 
connected with the model.

Key items of the environment are:

• Network connections

• Computing resources

• Security

Testing must be able to realistically 
portray the data sources the model 
requires in fielded operations. 

Testing must account for the data 
transport infrastructure. Models 
operating on ships, aircraft, 
submarines, etc. will have varying 
throughput and stability and may not 
have connections to the internet. 

Testing must match the fielded 
computing resources (memory, 
processor, and power). 

Testing must account for the security 
constraints in fielded operations (level 
of classification, sensitive data, 
restricted access).

Classification can also place 
requirements on how data is handled 
and shared. 

? What changes in data sources over 
time should be expected?

? How will software updates impact 
data sources?

? How will data sources and transport 
vary by operating location?

? What data and network connectivity 
will exist in classified environments? 

Containerization, development vs production, scalability, edge computing, 
TinyML, knowledge distillation, airgapping Page 57



Thinking about 
Documentation
This Section:

+ Discusses data cards and data characteristics

+ Discusses model cards and model characteristics

+ Outlines version control, automated documentation, test metrics, 
and context characteristics 06
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Version Control

• All documentation should be versioned and curated alongside the model itself and
the associated versioned data to facilitate version comparisons, auditing,
transparency, and roll back decisions.

Automated documentation

• Where feasible, automation tools should be adopted to reduce the workload of
creating and maintaining comprehensive documentation.

Evaluation Metrics and Results

• The documentation should detail the performance of the model in terms of
standard metrics such as accuracy, precision, recall, F1 score, AUC-ROC, etc.
Additionally, the documentation should describe the test set used for evaluation,
its composition, and any biases it may contain.

Operational Characteristics

• The documentation should contain a section that identifies the intended use cases
of the model, its limitations, and potential risks associated with its deployment.
This could also cover any post-deployment considerations such as monitoring,
retraining strategies, and contingency plans for unexpected model behavior.

Documentation
Comprehensive documentation, including the data sources, preprocessing, modeling 
techniques, evaluation metrics, is essential to inform tests of the fielded model. 

The AI model is:

• compliant with relevant regulations
and standards,

• comprehensively tested for all key
use cases and fielded contexts,

• monitored appropriately for behavior
drift and data drift, and

• transparent and understandable

Surround your documentation with best practices Documentation helps ensure
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Data Characteristics

Repeatability requires solid data documentation.

• Contains thorough documentation of the training and test data. This includes how 
the data was collected, its overall composition, any cleaning or preprocessing 
steps, and any data privacy considerations. Documenting potential biases in the 
training data is also important.

• Identify stakeholders and collaborators across the dataset’s lifecycle

• Collect documentation and other information to populate a Data Card

• Collect Data

• Collect Code in a repository with documentation of code

• Evaluate, assess, and audit the information for completeness, correctness, 
transparency and usefulness

• Version control: All documentation should be versioned alongside the model itself 
and the associated versioned data to facilitate version comparisons, auditing, 
transparency, and roll back decisions.

• Collaboratively review and update content and code

• The data,

• Meta-data,

• Data dictionaries,

• Location of data and code,

• Source information,

• Points of contact, 

• A change log, 

• A chain of custody record,

• Known limitations and caveats, 

• Code that reproduces cleaning, 
merging, engineering, preparation, 
etc. and 

• other relevant information

Specifics to includeWhat should be documented?
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Data Card
The Data Cards Playbook, shown below, is licensed under a Creative Commons 

Attribution-Share Alike 4.0 International License

• The image at right shows the first 2 
sections of an example of a data 
card template from 
https://sites.research.google/datacar
dsplaybook/.

• Best practices in documenting data 
is an active area of development and 
you should expect to see evolution 
there.

• More recommendations for the 
content and structure of a Data Card 
can be found at

https://doi.org/10.1145/3531146.353
3231
https://arxiv.org/abs/2204.01075
https://ai.googleblog.com/2022/11/t
he-data-cards-playbook-toolkit-
for.html

What should you know? Example Data Card

Page 61

https://sites.research.google/datacardsplaybook/
https://sites.research.google/datacardsplaybook/
https://doi.org/10.1145/3531146.3533231
https://doi.org/10.1145/3531146.3533231
https://arxiv.org/abs/2204.01075
https://ai.googleblog.com/2022/11/the-data-cards-playbook-toolkit-for.html
https://ai.googleblog.com/2022/11/the-data-cards-playbook-toolkit-for.html
https://ai.googleblog.com/2022/11/the-data-cards-playbook-toolkit-for.html


62

Model Characteristics

Repeatability requires solid model documentation.

Model documentation is an integral part of AI model test and evaluation. Thorough 
documentation is pivotal to promote transparency, enhance reproducibility, facilitate 
model understanding, and enable responsible usage. A model’s documentation 
should encompass the following:

Model Description

• Provides details of the model’s architecture and function. It includes the problem it 
is intended to solve, type (e.g., regression, classification, neural network), its input 
and output types, and the techniques used in its training. It should also note 
unique characteristics that distinguish it.

Training Process

• Documentation should describe the training methodology, including any 
preprocessing steps, the type of learning algorithm(s) employed, model parameter 
settings, performance metrics used, and any techniques applied to avoid 
overfitting (like regularization, dropout, or data augmentation). 

Information about the computing resources used can also be mentioned if applicable.

• Model details

• date, version, type, architecture, 
training algorithms, parameters, 
fairness constraints, contact 
information, citation details, 
license info

• Intended use

• Performance metrics

• Training data

• Quantitative analysis

• Ethical considerations and 
recommendations

Specifics to includeWhat should be documented?
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Model Card
Below is an example model card from:  

https://www.tensorflow.org/responsible_ai/model_card_toolkit/guide

Introduced by researchers at Google, a 
model card serves as a concise yet 
comprehensive "report card" for a 
trained ML model. It is designed to 
provide essential information that 
allows evaluators, users, and 
stakeholders to understand the model's 
behavior and make informed decisions 
about its deployment. A model card 
typically includes the categories of 
documentation mentioned on the prior 
page. To aid their creation, some 
organizations have built model card 
tools. Two popular examples are 
Huggingface’s Model Card Writing Tool
and Google’s Model Card Toolkit. 

What should you know? Model Card Example
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CONCLUSION
+ Testers should consider the operational use case, the 

environment, the data, the learning paradigm, and the algorithms 
in planning and conducting a rigorous evaluation of the AI 
model.

+ Solid documentation and deliberate curation of the data, the 
model, and surrounding context is required for repeatability. 07
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You should know What should testers ask?

The bottom line

• Data is the foundation of the 
performance of an AI model 
regardless of the algorithm, learning 
paradigm, and parameter settings.

• Insight into the lifecycle of AI model 
development enables rigorous T&E

• Documentation should cover 
everything needed to inform testing 
for the fielded model.

? Is our test strategy comprehensive?
? Are the test methods appropriate?
? Was the data split reasonable?
? How does the fielded context impact 

the T&E plan?
? Did the documentation sufficiently 

support the test planning & conduct

Rigorous and comprehensive T&E for AI models is vital and 
demands innovation and adaptation as the field rapidly evolves.

AI Model T&E Framework  

Solid T&E strategy development 
remains vital

AI models are in a period of very rapid 
experimentation and innovation. Self-
education is necessary to maintain 
awareness of new test requirements 
and approaches.
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